• Title/Summary/Keyword: Salt separation

Search Result 209, Processing Time 0.024 seconds

Distribution of Zirconium Between Salt And Bismuth During A Separation From Rare Earth Elements By A Reductive Extraction

  • S. W. Kwon;Lee, B. J.;B. G. Ahn;Kim, E. H.;J. H. Yoo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.165-169
    • /
    • 2004
  • It was studied on the reductive extraction between the eutectic salt and Bi metal phases. The solutes were zirconium and the rare earth elements, where zirconium was used as the surrogate for the transuranic(TRU) elements. All the experiments were performed in a glove box filled with argon gas. Two types of experimental conditions were used -high and low initial solute concentrations in salt. Li-Bi alloy was used as a reducing agent to reduce the high chemical activity of Li. The reductive extraction characteristics were examined using ICP, XRD and EPMA analysis. Zirconium was successfully separated from the rare earth elements by the reductive extraction method. The LiF-NaF-KF system was favorable among the fluoride salt systems, whereas the LiCl-KCl system was favorable among the chloride salt systems. When the solute concentrations were high, intermetallic compounds were found near the salt-metal interface.

  • PDF

NUCLIDE SEPARATION MODELING THROUGH REVERSE OSMOSIS MEMBRANES IN RADIOACTIVE LIQUID WASTE

  • LEE, BYUNG-SIK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.859-866
    • /
    • 2015
  • The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

Development of the Purification Method of Ovotransferrin in Egg White (난백 내 Ovotransferrin의 분리방법에 관한 연구)

  • Jang, A.;Jo, Y.J.;Lee, M.;Kim, J.C.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1025-1032
    • /
    • 2005
  • This study was carried out to separate ovotransferrin in chicken egg white by gel chromatography and heparin affinity chromatography. In gel filtration which was performed with 50mM Phosphate buffer (pH 7.2, 0.15M salt) at a flow rate of 2.0 ml/min, ovotransferrin and ovalbumin were eluted together in fraction number 11-16. In order to separate pure ovotransferrin, fraction No. 12-14 of them which have high concentration of ovotransferrin were concentrated and rechromatographed. However, the ovotransferrin did not separated clearly. In heparin affinity chromatography, the separation was performed with 50mM ethylaminetetraacetic acid (EDTA, pH7.2) and 50mM Phosphate buffer (pH 7.2, 0.15M salt contained) on ferrous and ferric ion saturated column at as same flow rate as gel filtration system's. Ovotransferrin and albumin were eluted together at 10-15min (fraction No.3) and 15-20min (fraction No.4), respectively. However, purified ovotransferrin was eluted at 156-165min and 165-175min (tube No.32-33) with 50 mM phosphate buffer (pH 7.2, 0.15M salt free), respectively. Heparin affinity chromatography with ferric ion saturated column was resulted in the best separation of ovotransferrin rather than separation by gel chromatography and ferrous ion saturated heparin affinity chromatography.

Measurement of Evaporation Rates for Lanthanum and Neodymium Chlorides

  • Kwon, S.W.;Lee, Y.S.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.74-74
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. Uranium deposit recovered from the solid cathode is a dendritic powder. It is necessary to separate the adhered salt from the deposits prior to the consolidation of uranium deposit. The adhered salt is composed of lithium, potassium, uranium, and rare earth chlorides. Distillation process was employed for the cathode processing. One of the operation methods is distillation of the salt at low temperature ($900^{\circ}C$), and then melting of the deposit at high temperature to avoid a backward reaction. For the development of the salt distiller, the distillation behavior of the low vapor pressure chlorides should be studied. Rare earth chlorides in the adhered salt of uranium deposits have relatively low vapor pressures compared to the process salt (LiCl-KCl). In this study, the evaporation rates of the lanthanum and neodymium chlorides were measured for the salt separation from electrorefiner uranium deposits in the temperature range of $825{\sim}910^{\circ}C$. The evaporation rate of both chlorides increased with an increasing templerature. The evaporation rate of lanthanum chloride varied from 0.12 to $1.68g/cm^2/h$. Neodymium chloride was more volatile than lanthanum chloride. The evaporation rate of neodymium chloride varied from 0.20 to $4.55g/cm^2/h$. The evaporation rate of both chlorides are more than $1g/cm^2/h$ at $900^{\circ}C$. Even though the evaporation rates of both chlorides were less than that of the process salt, the contents of the lanthanide chlorides were small in the adhered salt. Therefore it can be concluded that $900^{\circ}C$ is suitable for the operation temperature of the salt distiller.

  • PDF

Facilitated Transport Membrane for Ethylene/Ethane and Propylene/Propane Separation (SPEEK-Ag 촉진 수송 분리막을 이용한 $C_2,\;C_3$ 계 올레핀/파라핀 분리)

  • Kim, Ji-Yeon;Lee, Hyun-Joo;Kim, Hoon-Sik;Jung, Hyun-Wook;Choi, Dae-Ki
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.79-84
    • /
    • 2007
  • Separation of ethylene from ethane and propylene from propane have been conducted using facilitated olefin transport membrane with SPEEK-Ag (Ag substituted sulfonated poly(ether ether ketone)). SPEEK was prepared by the sulfonation of PEEK using cone. $H_2SO_4$ and the reaction time affected the degree of sulfonation (DS) of the resulting SPEEK. SPEEK-Ag composite membrane was formed by soaking SPEEK in the polyester support into the Ag salt solution. With increasing the concentration of SPEEK in MeOH, the thickness of SPEEK on the polyester increased. The selectivity and the flux of SPEEK-Ag membrane for the separation of ethylene/ethane and propylene/propane were changed by the thickness of SPEEK layer on the top of polyester support. The anion of silver salt also affects the membrane performance.

  • PDF

SELECTIVE REDUCTION OF ACTIVE METAL CHLORIDES FROM MOLTEN LiCl-KCl USING LITHIUM DRAWDOWN

  • Simpson, Michael F.;Yoo, Tae-Sic;Labrier, Daniel;Lineberry, Michael;Shaltry, Michael;Phongikaroon, Supathorn
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.767-772
    • /
    • 2012
  • In support of optimizing electrorefining technology for treating spent nuclear fuel, lithium drawdown has been investigated for separating actinides from molten salt electrolyte. Drawdown reaction selectivity is a major issue that requires investigation, since the goal is to remove actinides while leaving the fission products and other components in the salt. A series of lithium drawdown tests with surrogate fission product chlorides was run to obtain selectivity data with non-radioactive salts, develop a predictive model, and draw conclusions about the viability of using this process with actinide-loaded salt. Results of tests with CsCl, $LaCl_3$, $CeCl_3$, and $NdCl_3$ are reported here. Equilibrium was typically achieved in less than 10 hours of contact between lithium metal and molten salt under well-stirred conditions. Maintaining low oxygen and water impurity concentrations (<10 ppm) in the atmosphere was observed to be critical to minimize side reactions and maintain stable salt compositions. An equilibrium model has been formulated and fit to the experimental data. Good fits to the data were achieved. Based on analysis and results obtained to date, it is concluded that clean separation between minor actinides and lanthanides will be difficult to achieve using lithium drawdown.

New Retention Mechanism of Mononucleotides with Buffer Concentrations in Ion-suppressing RP-HPLC

  • Lee, Ju-Weon;Row, Kyung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.37-41
    • /
    • 2001
  • HPLC separation of ionic samples tends to be more complicated and difficult to understand than that of non-ionic compounds. On the other hand, band spacing is much more easily manipulated for ionic than for neutral samples. Ion-suppression RP-HPLC method was used with organic modifier and aqueous buffer solution. In this work, five mononucleotides of cytidine-5-monophosphate (5-CMP) disodium salt, uridine-5-monophosphate disodium salt (5-UMP), guanosine-5-monophosphate disodium salt (5-GMP), inosine-5-monophosphate disodium salt (5-IMP), and adenosine-5-monophosphate disodium salt (5-AMP) were examined. Acetic acid and sodium phosphate were used as buffers, and methanol as an organic modifier. A new relationship between the retention factor and the buffer concentration at a fixed modifier content (5% of methanol) could be expressed by following: K = (k(sub)-1 + k(sub)0 (k(sub)B/k(sub)S)/(1 + (k(sub)B/k(sub)S) C(sub)B(sup)a), where C(sub)B was the concentration of buffer. Using this relationship, the calculated values closely matched the experimental data. The derived relationship showed that as the buffer concentration increased, the retention factor approached a certain value, and this was buffer dependent.

  • PDF

Assessment on Recovery of Cesium, Strontium, and Barium From Eutectic LiCl-KCl Salt With Liquid Bismuth System

  • Woods, Michael E.;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.421-437
    • /
    • 2020
  • This study provides an assessment on a proposed method for separation of cesium, strontium, and barium using electrochemical reduction at a liquid bismuth cathode in LiCl-KCl eutectic salt, investigated via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS). CV studies were performed at temperatures of 723-823 K and concentrations of the target species up to 4.0wt%. Redox reactions occurring during potential sweeps were observed. Concentration of BaCl2 in the salt did not seem to influence the diffusivity in the studied concentration range up to 4.0wt%. The presence of strontium in the system affected the redox reaction of lithium; however, there were no distinguishable redox peaks that could be measured. Impedance spectra obtained from EIS methods were used to calculate the exchange current densities of the electroactive active redox couple at the bismuth cathode. Results show the rate-controlling step in deposition to be the mass transport of Cs+ ions from the bulk salt to the cathode surface layer. Results from SEM-EDS suggest that Cs-Bi and Sr-Bi intermetallics from LiCl-KCl salt are not thermodynamically favorable.

Optimization of chemical cleaning of discarded reverse osmosis membranes for reuse

  • Jung, Minsu;Yaqub, Muhammad;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study optimized the chemical cleaning process of discarded RO membranes for reuse in less demanding separation processes. The effect of physicochemical parameters, including the temperature, cleaning time, pH of the cleaning solution, and addition of additives, on the cleaning process was investigated. The membrane performance was evaluated by testing the flux recovery rate and salt rejection before and after the cleaning process. High temperatures (45-50 ℃) resulted in a better flux recovery rate of 71% with more than 80% salt rejection. Equal time for acid and base cleaning 3-3 h presented a 72.43% flux recovery rate with salt rejection above 85%. During acid and base cleaning, the best results were achieved at pH values of 3.0 and 12.0, respectively. Moreover, 0.05% concentration of ethylenediaminetetraacetic acid presented 72.3% flux recovery, while 69.2% flux was achieved using sodium dodecyl sulfate with a concentration of 0.5%; both showed >80% salt rejection, indicating no damage to the active layer of the membrane. Conversely, 0.5% concentration of sodium percarbonate showed 83.1% flux recovery and 0.005% concentration of sodium hypochlorite presented 85.2% flux recovery, while a high concentration of these chemicals resulted in oxidation of the membrane that caused a reduction in salt rejection.

A Basic Study on Capture and Solidification of Rare Earth Nuclide (Nd) in LiCl-KCl Eutectic Salt Using an Inorganic Composite With Li2O-Al2O3-SiO2-B2O3 System (Li2O-Al2O3-SiO2-B2O3 구조의 무기합성매질을 이용한 LiCl-KCl 공융염 내 희토류 핵종(Nd)의 분리 및 고화에 관한 기초연구)

  • Kim, Na-Young;Eun, Hee-Chul;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • The pyroprocessing of spent nuclear fuel generates LiCl-KCl eutectic waste salt containing radioactive rare earth nuclides. It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste in a hot-cell facility. In this study, capture and solidification of a rare earth nuclide (Nd) in LiCl-KCl eutectic salt using an inorganic composite with a $Li_2O-Al_2O_3-SiO_2-B_2O_3$ system was conducted to simplify the existing separation and solidification process of rare earth nuclides in LiCl-KCl eutectic waste salt from the pyroprocessing of spent nuclear fuel. More than 98wt% of Nd in LiCl-KCl eutectic salt was captured when the mass ratio of the composite was 0.67 over $NdCl_3$ in the eutectic salt. The content of $Nd_2O_3$ in the Nd captured-composite reached about 50wt%, and this composite was directly fabricated into a homogeneous and chemical resistant glass waste in a monolithic form. These results will be utilized in designing a process to simplify the existing separation and solidification process.