• Title/Summary/Keyword: Salt resistance

Search Result 602, Processing Time 0.031 seconds

Experimental Study of Bond Properties Using Coated Bars (도막재료에 따른 철근의 부착성능에 관한 실험적 고찰)

  • 김영진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.211-216
    • /
    • 2003
  • Coated bars are protecting reinforcing bars from corrosion and enhancing durabilities of reinforced concrete structures are tested to evaluate corrosion protection properties. Tests are performed based on the relevant standards of ACI and ASTM, such as chemical resistance, salt water spray, salt crack test and chloride permeability test with the main variable of the coating thickness. Three type materials are tested by Polyethylene, epoxy and bare bar. Test results show good chemical protection property and chloride permeability. Polyethylene coated bar is good coating material than any other materials.

  • PDF

Zygosaccharomyces rouxii Combats Salt Stress by Maintaining Cell Membrane Structure and Functionality

  • Wang, Dingkang;Zhang, Min;Huang, Jun;Zhou, Rongqing;Jin, Yao;Wu, Chongde
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.62-70
    • /
    • 2020
  • Zygosaccharomyces rouxii is an important yeast that is required in the food fermentation process due to its high salt tolerance. In this study, the responses and resistance strategies of Z. rouxii against salt stress were investigated by performing physiological analysis at membrane level. The results showed that under salt stress, cell integrity was destroyed, and the cell wall was ruptured, which was accompanied by intracellular substance spillover. With an increase of salt concentrations, intracellular Na+ content increased slightly, whereas intracellular K+ content decreased significantly, which caused the increase of the intracellular Na+/K+ ratio. In addition, in response to salt stress, the activity of Na+/K+-ATPase increased from 0.54 to 2.14 μmol/mg protein, and the ergosterol content increased to 2.42-fold to maintain membrane stability. Analysis of cell membrane fluidity and fatty acid composition showed that cell membrane fluidity decreased and unsaturated fatty acid proportions increased, leading to a 101.21% rise in the unsaturated/saturated fatty acid ratio. The results presented in this study offer guidance in understanding the salt tolerance mechanism of Z. rouxii, and in developing new strategies to increase the industrial utilization of this species under salt stress.

Synthesis and Solution Properties of Fluorinated Amphiphilic Polyacrylamide (불화계 양친매성 폴리아크릴아마이드의 합성과 용액거동)

  • Zhao, Fangyuan;Du, Kai;Yi, Zhuo;Du, Chao;Fang, Zhao;Mao, Bingquan
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.403-411
    • /
    • 2015
  • A series of hydrophobically associating fluorinated amphiphilic polyacrylamide copolymers with remarkably high heat resistance and salt tolerance were synthesized by free radical micellar copolymerization, using acrylamide (AM) and sodium 2-acrylamido-tetradecane sulfonate ($AMC_{14}S$) as amphiphilic monomers, and 2-(perfluorooctyl) ethyl acrylate (PFHEA) as hydrophobic monomer. The structure of the terpolymer was characterized by FTIR, $^1H$ NMR and $^{19}F$ NMR. The solution properties of the terpolymers were investigated in details, and the results showed that the terpolymer solution had strong intermolecular hydrophobic association as the concentration exceeded the critical association concentration 1.5 g/L. The terpolymer solution possessed high surface activity, viscoelasticity, excellent heat resistance, salt tolerance and shearing resistance. The viscosity retention rate of copolymer solution was as high as 59.9% under the condition of fresh wastewater, $85^{\circ}C$ and a 60-days aging test.

Mechanical Properties and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy

  • Park, Jae Seon;Jung, Hwa Chul;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • The plasma electrolytic oxidation (PEO) process is a relatively new surface treatment technique that produces a chemically stable and environment-friendly electrolytic coating that can be applied to all types of magnesium alloys. In this study, the characteristics of oxide film were examined after coating the extruded AZ31 alloy through the PEO process. Hard ceramic coatings were obtained on the AZ31 alloy by changing the coating time from 10min to 60min. The morphologies of the surface and the cross-section of the PEO coatings were examined by scanning electron microscopy and optical microscopy, and the thickness of the coating was measured. The X-ray diffraction pattern of the coating shows that the coated layer consists mainly of the MgO and $Mg_2SiO_4$ phases after the oxidation reaction. The hardness of the coated AZ31 alloy increased with increasing coating time. In addition, the corrosion rates of the coated and uncoated AZ31 alloys were examined by salt spray tests according to ASTM B 117 and the results show that the corrosion resistance of the coated AZ31 alloy was superior to that of the un-coated AZ31 alloy.

Experimental Study on the Resistance of Chloride Infiltration of Concrete Using Activated Hwangtoh Admixture (활성황토를 사용한 콘크리트의 염소이온 침투 저항성에 관한 실험적 연구)

  • 이강우;장종호;최희용;구자술;황혜주;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.781-786
    • /
    • 2001
  • The Salt attack is one of the primary factors that cause the deterioration of durability in steel reinforced concrete structure. And to depreciate the deterioration from the Salt attack in concrete structure, pozzolanic materials are used widely in recent years. In this study, experiments about the resistance of chloride infiltration of concrete according to the replacement rations of Activated Hwangtoh and various pozzolanic materials(silica fume, fly ash, blast furnace slag and non Activated/Activated Hwangtoh) are performed and the results of this study were shown as follows; 1) As the replacement ratios of Activated Hwangtoh were getting higher, the strength of concrete was increased and in case of various pozzolanic materials, strength of Activated Hwangtoh in specimen was better than that of fly ash, blast furnace slag and non Activated Hwangtoh. 2) As the replacement ratios of Activated Hwangtoh were getting higher, the resistance of chloride infiltration of concrete was increased and in case of various pozzolanic materials, silica fume is better than any other pozzolanic materials and Activated Hwangtoh was better than that of fly ash, blast furnace slag and non Activated Hwangtoh.

  • PDF

Tracking Resistance and Aging Characteristics of Epoxy Insulating Materials by the Rotating Wheel Dip Test (Rotating Wheel Dip Test에 의한 에폭시 절연재료의 내트래킹성과 열화 특성)

  • Cho, Han-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.530-537
    • /
    • 2008
  • This paper describes the results of a study on the tracking performance of outdoor insulating materials based on the rotating wheel dip test(RWDT). And, the influence of surface degradation was evaluated through such as measurement of the flashover voltage after and before tracking test, also aspects of surface degradation using scanning electron microscopy. The time to tracking breakdown of treated filled specimen is longer than untreated filled specimen. And, after the RWDT, the surface of specimen by adding untreated filler appeared heavy erosion. It was found that the addition to surface treated filler, the better tracking resistance. In the RWDT, the breakdown specimen is not affected by the dry flashover voltage, despite the fact that the surface degradation of tracking test has different state on each specimen. This suggests that wet flashover voltage play an important role in evaluating of tracking and erosion on the surface degradation in tracking test. And, the flashover voltage of specimen under wet conditions are greatly affected by the salt concentration and degree of degradation by the RWDT Because of hydrophobicity and degree of degradation by the RWDT, the flashover voltage of treated filled specimen is higher than that of untreated filled specimen. Different types of specimen may have different hydrophobicity and their surface state under contaminated conditions may not be the same.

Initial estimates of the economical attractiveness of a nuclear closed Brayton combined cycle operating with firebrick resistance-heated energy storage

  • Chavagnat, Florian;Curtis, Daniel
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.488-493
    • /
    • 2018
  • The Firebrick Resistance-Heated Energy Storage (FIRES) concept developed by the Massachusetts Institute of Technology aims to enhance profitability of the nuclear power industry in the next decades. Studies carried out at Massachusetts Institute of Technology already provide estimates of the potential revenue from FIRES system when it is applied to industrial heat supply, the likely first application. Here, we investigate the possibility of operating a power plant (PP) with a fluoride-salt-cooled high-temperature reactor and a closed Brayton cycle. This variant offers features such as enhanced nuclear safety as well as flexibility in design of the PP but also radically changes the way of operating the PP. This exploratory study provides estimates of the revenue generated by FIRES in addition to the nominal revenue of the stand-alone fluoride-salt-cooled high-temperature reactor, which are useful for defining an initial design. The electricity price data is based on the day-ahead markets of Germany/Austria and the United States (Iowa). The proposed method derives from the equation of revenue introduced in this study and involves simple computations using MatLab to compute the estimates. Results show variable economic potential depending on the host grid but stress a high profitability in both regions.