• Title/Summary/Keyword: Salt concentration

Search Result 1,750, Processing Time 0.028 seconds

Influence of the pH and Salt Concentrations on Physicochemical Properties of Pork Myofibrillar Protein Gels Added with Cornstarch

  • Lee, Chang Hoon;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.254-261
    • /
    • 2020
  • The aim of this study was to evaluate quality characteristics of pork myofibrillar protein (MP) added with cornstarch as affected by different pH values and salt cocnentrations. MP mixtures were prepared with three different pH values (pH 6.00, 6.25, and 6.50) and three different salt concentrations (0.15, 0.30, and 0.45 M). Cooking yield (CY), gel strength, viscosity, and scanning electron microscopy were measured to evaluate characteristics of MPs. CYs of MPs with cornstarch at above pH 6.25 or salt 0.30 M were increased compared to those at pH 6.00 or salt 0.15 M. However, gel strengths of MPs at salt 0.45 M were higher than those at salt 0.30 M. In microstructure analysis, MP gels with increasing pH value and salt concentration showed compact and uniform structure. Thus, MP gels with pH 6.25 and salt concentration of 0.30 M would be better for manufacturing meat products containing cornstarch to increase their water holding ability.

Salt Injury and Overcoming Strategy of Rice (수도의 염해와 대책)

  • 이승택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.66-80
    • /
    • 1989
  • Salt injury in rice is caused mainly by the salinity in soil and in the irrigated water, and occasionaly by salinity delivered through typhoon from the sea. The salt concentration of rice plants increased with higher salinity in the soil of the rice growing. The climatic conditions, high temperature and solar radiation and dry conditions promote the salt absorption of rice plant in saline soil. The higher salt accumulation in the rice plant generally reduces the root activity and inhibits the absorption of minerals of rice plant, resulting the reduction of photosynthesis. The salt damages of rice plant, however, are different from different growth stage of rice plants as follows: 1. Germination of rice seed was slightly delayed up to 1.0% of salt concentration and remarkably at 1. 5%, but none of rice seeds were germinated at 2.5%. This may be due to the delayed water uptake of rice seeds and the inhibition of enzyme activity, 2. It was enable to establish rice seedlings at seed bed by 0.2% of salt concentration with some reduction of leaf elongation. The increasing of 0.3% salt concentration caused to the seedling death with varietal differences, but most of seedlings were death at 0.4% with no varietal differences. 3. Seedlings grown at the nursery over 0.1% salt, gradually reduced in rooting activity after transplanting according to increasing the salt concentration from 0.1% up to 0.3% of paddy field. However, the seedlings grown in normal seed bed showed no difference in rooting between varieties up to 0.1% but significantly different at 0.3% between varieties, but greatly reduced at 0.5% and died at last in paddy after transplanting. 4. At panicle initiation stage, rice plant delayed in heading by salt damage, at meiotic stage reduced in grains and its filling rate due to inhibition of glume and pollen developing, and salt damage at heading stage and till 3 weeks after heading caused to reduction of fertilization and ripening rate. In viewpoint of agricultural policy the overcoming strategy for salt injury is to secure sufficient water source. Irrigation and drainage systems as well as underground drainage is necessary to desalinize more effectively. This must be the most effective and positive way except cost. By cultural practice, growing the salt tolerant variety with high population could increase yield. The intermittent irrigation and fresh water flooding especially at transplanting and from panicle initiation to heading stage, the most sensitive to salt injury, is important to reduce the salt content in saline soil. During the off-cropping season, plough and rotavation with flooding followed by drainage, or submersion and drainage with groove could improve the desalinization. Increase of nitrogen fertilizer with more split application, and soil improvement by lime, organic matter and forign soil addition, could increase the rice yield. Shift of trans-planting is one of the way to escape from the salt injury.

  • PDF

Effect of Soil Salinity on Growth, Yield and Nutrients Uptake of Whole Crop Barley in Newly Reclaimed Land (신간척지에서 토양 염농도가 청보리 생육, 수량 및 양분 흡수에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Shin, Pyung;Yang, Chang-Hyu;Back, Nam-Hyun;Lee, Kyeong-Bo;Baek, Seung-Hwa;Chung, Doug-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.332-337
    • /
    • 2013
  • BACKGROUND: Newly reclaimed land has poor soil environment for crop growth since it is high in salt concentration but low in organic content compared with ordinary soil. It is known that whole-crop-barley can grow better in the soil of relatively high salt concentration than other crops but, the growth is poor at the concentration if higher than certain amount and it is a difficulty to secure productivity. Hence, the level of soil salt concentration suitable for the production of bulky feed in newly reclaimed land has been investigated. METHODS AND RESULTS: At Saemanguem reclaimed land, the land for the soil salt concentration electrical conductivity (EC) 0.8, 3.1, 6.5, 11.0 dS/m was selected; and chemical fertilizer $N-P_2O_5-K_2O$ (150-100-100kg/ha) was tested; and forage barley 220kg/ha were sown. The soil salt concentration during the cultivation period decreased in the order of harvest season>earing season>sowing season>wintering season, and the salt concentration in harvest season is 1.4-4.2 times higher than that of the sowing season. The higher the salt concentration, the poorer the over ground growth due to poor rooting; especially at EC 11.0 ds/m there was emergence but, it blighted after wintering. The Yield from the soil salt concentration 3.1dS/m and 6.5 dS/m was 68% and 35% from that of the soil salt concentration 0.8 dS/m (8.8 MT/ha) respectively. The proline content in early life stage was more than that of the harvest season, and it increased with salt concentration. The higher salt concentration, the more $Na_2O$ and MgO content in harvest season; but the higher the salt concentration, the less the content of N, $P_2O_5$, $K_2O$ and CaO. CONCLUSION(S): When the soil salt concentration becomes higher than 3.1 dS/m, the yield becomes poor because there is serious growth inhibition of forage barley both in root part and above aerial part that results in unbalanced absorption of nutrients. Therefore, it is recommended that the salt concentration should be lowered below 3.1 dS/m by underground drainage facilities or irrigating water for the stable production of whole-crop-barley.

Effects of Salt Addition in Sugar Based Osmotic Dehydration on Mass Transfer and Browning Reaction of Carrots

  • Chang, Moon-Jeong;Han, Myung-Ryun;Kim, Myung-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.3
    • /
    • pp.230-234
    • /
    • 2003
  • Mass transfer characteristics during osmotic dehydration of carrots were studied as functions of immersion temperature and time, and sugar and salt concentrations. The effect of osmotic dehydration on the degree of browning of air-dried carrots was also evaluated. Increasing the immersion temperature and time, sugar concentration, and salt addition increased water loss, sugar gain, molality and rate of dehydration. The water loss and increases in solids, and molality were rapid in the beginning of the process and then increased slowly during remainder of the process. Increasing 1 or 2% salt concentration in the 40$^{\circ}$Brix sugar solution at 6$0^{\circ}C$ increased water loss and solid gain. Salt addition was not able to significantly affected on water loss and solid gain compare to temperature (40~8$0^{\circ}C$) and sugar concentration (20~60$^{\circ}$Brix) changes due to the low salt concentration. A minimum degree of browning of the air-dried carrots (O.D. = 0.048) could be achieved using binary solutions (40$^{\circ}$Brix sugar solution with 2% salt addition) with 24 min of immersion time compared to control (O.D. = 1.308) or blanching with 24 min of immersion time (O.D. = 0.174).

A Cross-Cultural Study of the Awareness and the Preference on Salinity among the Northeast Asians (동북아 아시아인의 짠맛에 대한 인지도 및 기호도 비교 연구)

  • Park, Hyun-Jung;Kwak, Eun-Jung;Cho, Mee-Hee;Lee, Kyung-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.4
    • /
    • pp.525-532
    • /
    • 2009
  • The purpose of this study was to compare the ability of Northeast Asians to discriminate the salinity in salt solution and foods, and to compare their preference of salinity. Panels of Korean, Japanese and Chinese evaluated three kinds of samples that contained different level of salt such as salt solutions, julienned radish salad, Bulgogi. The salt levels had been manipulated to produce five samples of each one. The salt solutions were prepared by adding 0.3%, 0.7%, 1.1%, 1.5%, 1.9% salt into water. Different levels of salt in Julienned radish salad and Bulgogi were prepared by adding 0.5%, 1.5%, 2.5%, 3.5%, 4.5% salt to the recipe. The results of this study showed that the three ethnic groups had significant differences in their ability to distinguish the intensity of salinity in solutions containing a high contents of salt(1.5~1.9%). According to the regression analysis, Koreans(a=1.050) turned out to be the most able to detect the intensity of salinity, compared to the Japanese (a=0.988) and Chinese (a=0.807). All ethnic groups preferred a salt concentration of 0.3%, and the preference for this concentration was lower in Japanese than in Koreans and Chinese. There were significant differences in the perception of salinity in the julienned radish salad containing more than 3.5% salt between Koreans and Chinese. Koreans (a=1.168) appeared to be the most able to detect the intensity of salinity, compared to the Japanese (a=0.908) and Chinese (a=0.793). Both Koreans and Japanese had the strongest preference for the julienned radish salad containing a 1.5% salt concentration, while the Chinese preferred a salt concentraion of 2.5%. The ability of ethnic groups to detect the salinity in Bulgogi were significantly different at high salt -concentrations (more than 3.5%), and the awareness of salinity was as fallows : Koreans(a=0.161) > Japanese (a=0.896) > Chinese (a= 0.845). Koreans and Japanese had a higher preference or the Bulgogi containing a salt concentration of 1.5%, and the Chinese had higher preference at a salt concentration of 2.5%.

  • PDF

A Mechanical Model for Texture Changes and Rheological Properties of Radish During Salting (염농도의 확산에 따른 무의 물성학적 특성의 예측 model에 관한 연구)

  • Lee, Seung-In;Kim, Byung-Yong;Cho, Jae-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.335-340
    • /
    • 1992
  • The amounts of salt diffused into radish after immersing in various concentrations of salt solution at different temperatures were measured and the changes of radish texture by the salt diffusion were estimated with the viscoelastic constants of a 3 element solid model determined by a stress relaxation test. The amount of salt diffused through radish was increased with increasing the salt concentration and soaking temperature. While the instantaneous stress, equilibrium elastic solid content and viscoelastic constants of radish were decreased as salt concentration and soaking temperature increased, the stress relaxed fast. Viscoelastic constants as well as the diffusivity were influenced by salt concentration more than by soaking temperature. The rheological equations for the predictable stress changes of radish after immersed in the salt solution at various conditions (temperature, salt concentration and impure salt) were suggested as a function of time.

  • PDF

Prediction Model of Absorbed Quantity and Diffusivity of Salf in Radish during Salting (무우의 염절임시 소금의 침투량과 확산도 예측모델)

  • 최용희;권태연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.572-581
    • /
    • 1991
  • For the development of a model to predict absorbed salt quantity in radish during salting, absorbed salt quantity and water content change in radish by the hour were measured at 5%, 10%, 15% brine concentration and $10^{\circ}C,\;20^{\circ}C,\;30^{\circ}C$ respectively. Absorbed salt quantity in radish by the time showed logarithmic function, absorbed salt quantity by brine concentration and temperature showed linear relation. A model to predict absorbed salt quantity in radish at each time, brine concentration and temperature was calculated by the regression program of SPSS. Apparent diffusivity of salt in radish was calculated from appropriated diffusion equation solution of Fick's second law using computer simulation. Salt diffusivity in radish increased as brine concentration increased and the effect of temperature could by expressed by Arrhenius equation. A model equation which could predict salt diffusivity was developed by regression analysis. To specify relation between salt quantity which absorbed into radish and water content which removed out of it, Flux ratio(${\Delta}W/{\Delta}S$) was calcuated. The values showed that the removed water content was greater than the absorbed salt quantity.

  • PDF

Change in rheological properties of radish during salting (염 절임동안에 일어나는 무조직의 유변학적인 변화)

  • Kim, Byung-Yong;Cho, Jae-Sun
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.399-403
    • /
    • 1992
  • The amounts of salt diffused into radish after immersing in various concentrations of salt solution at different temperatures were measured and the changes of radish texture by the salt diffusion were estimatedwith the viscoelastic constants of a 3 element solid model determined by a stress relaxation test. While the amount of salt diffused throught radish was increased with increasing the salt concentration and soaking temperature, the istantaneous stress, equilibrium elastic solid and viscoelastic constants of radish were decreased. Also the degree of stress relaxation and equilibrium elastic solid approached the same or zero values, as salt concentration was further increased. Viscoelstic constants as well as salt diffusion were more influenced by lower salt concentration with increased temperatures.

  • PDF

A Study of Salt's Effects on Cooked Food (각종 식염의 조리효과에 관한 연구)

  • 문수재
    • Journal of the Korean Home Economics Association
    • /
    • v.17 no.1
    • /
    • pp.22-28
    • /
    • 1979
  • The phyio-chemical properties of Ion exchange salt, crude salt, particaly refined salt, and Isoized salt were determined. The basic amount of salt used in cooking were standardized . Acceptabilities as to the taste and saltiness of food prepared with the standard amounts of various kinds of salt were compared. Whereupon, the following conclusion was obtained. 1) Crude salt showed 12.23 per cent water content, the highest among the kinds of salt examined, while particaly refined salt had 2.53% water content. Refined salt, Ion exchange salt, and Iodized salt showed 0.36%, and 0.28%, respectively. 2) Where the same amount of salt was dissolved in the same amount of water, crude salt and partialy refined salt were dissolved twice as Ion exchange salt of fine-grain form, refined salt, and Iodized salt. In actual cooking, Ion exchanges salt and refined salt are used only half as much as raw salt, and it can be said that the time required for dissolving salt is the same. 3) The comparison between content and weight of various kinds of salt showed that the weights of Ion exchange salt, Iodized salt, and refined salt were two times as heavy as crude salt and partialy refined condition of same content. 40 The threshold concentration of salt is the sensed degree of saltiness. Different concentrations were recorded for various for various kinds of salt, the threshold concentration of Ion exchanges salt showed the lowest degree of 0.05, while that of partialy refined salt was 0.09 equivalent to 1.8 times that of the former. 5) Experimental cooking involving various kinds of salt indicated that where salt was used accurately, soup, vegetables, kimchi, and soybean sauce which were prepared with Ion exchanges salt showed the best acceptability , but no statistical differences could be noted among sarious kinds of salt used in preparing those foods.

  • PDF

Changes in Quality Characteristics of Eggplant Pickles by Salt Content and Drying Time during Storage (절임농도와 건조시간에 따른 가지장아찌의 저장 중 품질 특성 변화)

  • Choi, Sang-A;Cho, Mi-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.2
    • /
    • pp.211-224
    • /
    • 2012
  • Eggplant pickles were classified into three groups based on salt concentration (1, 3, 5%) and three groups based on drying time (30, 60 and 120 minutes), followed by storage at $5^{\circ}C$ for 28 days. Raw eggplant contains 94.82% water content. The increase in salt concentration and drying time caused a decrease in the moisture content. Compared to the 0.27% ash content of raw eggplant, the ash content of eggplant pickles increased noticeably with increasing salt concentration due to penetration into the eggplant pickles. pH values decreased significantly as the levels of salt concentration and dying time increased (p<0.05). In terms of storage time, pH values decreased from 21 days. The variation in salinity increased significantly as the concentration of salt increased. Compared to normal pickles salted at 5.39% salinity, eggplant pickles constituted 0.27~0.77% (1%), 0.40~1.14% (3%), and 0.47~11.20% (5%) 'low-salinity' eggplant pickles. Reducing-sugar content differed on the dates of 7, 14 and 21 in drying time and at 3% salinity. Hardness differed at 30, 60, and 120M on the 28th and 1, 5% salt concentration. Resilience differed according to drying time and from dates of 0 to 14th. The number of total microbes decreased at low salinity. In terms of storage time, the number of microbes tended to decrease after the 21st. In the consumer preference test, lightness of 5%-30M was the highest value.