• 제목/요약/키워드: Salt Spray Test

검색결과 134건 처리시간 0.023초

The Effect of $Bi(OH)_3$ on Corrosion-Resistant Properties of Automotive Epoxy Primers

  • Yang, Wonseog;Min, Sungki;Hwang, Woon-suk
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.370-374
    • /
    • 2008
  • In this study, we evaluated anti-corrosion properties of both commercial unleaded and lead epoxy primer for automotive substrate before applying to actual painting lines by salt spray test, and cyclic corrosion test, potentiodynamic test and electrochemical impedance spectroscopy. The difference in the corrosion resistance between automotive epoxy primers contained $Bi(OH)_{3}$ and leaded one was investigated. And it was also discussed the effect of zinc phosphate pretreatment to the epoxy primers. The specimen coated epoxy primer contained $Bi(OH)_{3}$ showed 0.5 V higher corrosion potential than that of bare steel. The result of salt spray test did not indicate remarkable difference of corrosion resistance in all specimens above $10{\mu}m$ thickness up to 1200 hours. In the cyclic corrosion test, epoxy primers contained $Bi(OH)_{3}$ on phosphated substrate performed good corrosion properties until 800 hours. The epoxy primer contained $Bi(OH)_{3}$ performed the equivalent corrosion resistance as leaded coating on phosphated steel, but slightly inferior to that of leaded on bare steel. These results show that the pre-treatment of zinc phosphate is effective as well as pigment changing in performing anti-corrosion properties in automotive bodies.

옥외용 고분자 전기절연재료의 염수 및 UV조사에 의한 열화 특성 (The Aging Characteristics of Polymer Electrical Insulation Materials bv UV Radiation and Salt Water Spray)

  • 최남호;한상일;한상옥;박강식;김종석;박양범
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.221-224
    • /
    • 1997
  • In this study we investigated the acting characteristics of Polymers for electrical insulation by UV radiation and salt water spray treatment. We used the Polymers such as EPDM, SR. PTFE. EVA. We measured contact angle and surface resistance to know the aging characteristic of Polymer surface. And we use SEM to observe the change of the surface shape. Dry flashover voltage test impulse voltage test were carried for the polymer insulator(EVA) . Through this experiment and the analysis we could know the polymers have a good resistance to weathering conditions like as salt spray UV irradiation and mix of them. And we can compare the aging characteristics between Polymers. As a result, we could know that the surface characteristics of PTFE is better than the other. And the degree, electrical characteristics is affected by change of surface shape is not big.

  • PDF

Accelerated and Outdoor Exposure Tests of Aluminum Coated Steel Sheets

  • Kim, Jongmin;Lee, Jaemin;Lim, Sangkyu;Jung, Choonho
    • Corrosion Science and Technology
    • /
    • 제10권6호
    • /
    • pp.199-204
    • /
    • 2011
  • Hot dip metallic coated steels like as galvanized (GI), zinc-aluminium (GL) and aluminium coated steels are mostly used where corrosion resistance is needed. There are two kinds (type 1 and type 2) of aluminium coated steel being commercially used among them. Type 1 aluminium coated steel is coated with an Al-5~11 wt%Si alloy and Type 2 aluminium coated steel consists of commercially pure aluminium. Type 1 Al coated steel is generally used in automotive components and electrical appliances while type 2 aluminium coated steel is mainly used in construction applications such as building cladding panels, air conditioning and ventilation system. In this study, Type 1 aluminium coated steels have tested by accelerated conditions (salt spray or corrosive gas) and outdoor exposure condition in order to understand their corrosion behaviour. Due to the distinct corrosion mechanism of Al which exposes to the severe chloric condition, Salt Spray Test cannot predict the ordinary atmospheric corrosion of Al based coated materials. In addition, the test results and their corrosion feature of Al coated steel sheets will be discussed comparing with other metallic coated steel sheets of GI and GL.

아연 전기 도금 강의 환경친화적인 화성처리 기술 개발 (Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel)

  • 김성종;김정일;장석기
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

마그네슘-알루미늄 합금의 화성처리 공정 개발과 그 내식성 평가 (Development of chemical conversion coating process for Mg-Al alloy and its anti-corrosion property)

  • 김성종
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.265-266
    • /
    • 2006
  • The chemical conversion coating formed on magnesium alloy investigated for low cost and harmless in environment by using the colloidal silica as the main component. The film formed in 298 K is thick, the film, which was thought combination of Si-O, was formed. The film formed in 313 K is thinner than that in 298 K. The quantity of film formed at high temperature such as 333 K and 353 K is smaller than dissolved quantity. At the anodic polarization experiment, corrosion resistance in sealing by hot water after chemical conversion treatment in basic solution condition get worse than that in comparison with basic solution condition. In salt spray test, the ratio of black rust on specimen that did not conducted chemical conversion treatment was five times or more compared with those of chemical conversion treated specimen. The film thickness of chemical conversion coating produced by alkali treatment process is thinner than in comparison with that of specimen produced in basic chemical conversion treatment solution condition. It is thought, however, that it showed good corrosion resistance during salt spray test because the area of microcracks is small.

  • PDF

실링이 플라즈마 스프레이 코팅된 알루미나 코팅재의 내부식성에 미치는 영향 (Effect of Sealing on the Corrosion Resistance of Plasma-Sprayed Alumina Coatings)

  • 권의표;김세웅;이종권
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.442-447
    • /
    • 2022
  • Sealing treatment is a post-surface treatment of the plasma spray coating process to improve the corrosion resistance of the coating material. In this study, the effect of the sealing on the corrosion resistance and adhesive strength of the plasma spray-coated alumina coatings was analyzed. For sealing, an epoxy resin was applied to the surface of the coated specimen using a brush. The coated specimen was subjected to a salt spray test for up to 48 hours and microstructural analysis revealed that corrosion in the coating layer/base material interface was suppressed due to the resin sealing. Measurement of the adhesive strength of the specimens subjected to the salt spray test indicated that the adhesive strength of the sealed specimens remained higher than that of the unsealed specimens. In conclusion, the resin sealing treatment for the plasma spray-coated alumina coatings is an effective method for suppressing corrosion in the coating layer/base material interface and maintaining high adhesive strength.

420J2 스테인리스강의 내식성에 미치는 저온 템퍼링의 영향 (Effect of Low Tempering Temperature on Corrosion Resistance of 420J2 Stainless Steel)

  • 정병호;김헌주;김무길;오이식;김동섭
    • 열처리공학회지
    • /
    • 제17권1호
    • /
    • pp.29-35
    • /
    • 2004
  • The effect of low tempering in a temperature range of $150{\sim}400^{\circ}C$ on corrosion resistance in 420J2 stainless steel austenitized at $1000^{\circ}C$ was investigated by the application of salt spray test, electrochemical pitting test in 3.5% NaCl solution and DL-EPR test for intergranular corrosion in 0.5M $H_2SO_4$+0.01M KSCN solution. In salt spray test, good corrosion resistance was obtained in a tempering temperature range of $150{\sim}250^{\circ}C$. Pitting potential was increased to the tempering temperature of $250^{\circ}C$, but decreased with the increase of temperature up to $400^{\circ}C$ And it was thought that the degradation of pitting corrosion resistance showed at the tempering temperature of around $400^{\circ}C$ was due to the precipitation of $Cr_7C_3$ of $M_7C_3$ type. The degree of sensitization showed increasing tendency with the increase of tempering temperature, and also Cr depletion phenomena were observed in the vicinity of grain boundary.

Galvanic Corrosion of AZ31 Mg Alloy Contacting with Copper

  • Phuong, Nguyen Van;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.151.1-151.1
    • /
    • 2017
  • This work studied the corrosion behavior of AZ31 Mg alloy galvanically coupled with Cu during immersion in 0.1 and 0.5 M NaCl solutions by in-situ observation and galvanic corrosion current measurement using a zero resistance ammeter. The corrosion behavior of AZ31 Mg alloy was also studied by salt spray test. The average galvanic corrosion density during 2 h immersion in 0.1 NaCl solution was found to decrease as an exponential function with increasing the surface area ratios between AZ31:Cu or with increasing the distance between AZ31 and Cu. The corrosion of electrodeposited Cu on AZ31 Mg alloy was concentrated at the area next to Cu (about 5 mm for immersion test and 2 mm for salt spray test) and pitting corrosion was accelerated at the area beyond the severely corroded area by the galvanic coupling effect.

  • PDF

도막재료에 따른 철근의 부착성능에 관한 실험적 고찰 (Experimental Study of Bond Properties Using Coated Bars)

  • 김영진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.211-216
    • /
    • 2003
  • Coated bars are protecting reinforcing bars from corrosion and enhancing durabilities of reinforced concrete structures are tested to evaluate corrosion protection properties. Tests are performed based on the relevant standards of ACI and ASTM, such as chemical resistance, salt water spray, salt crack test and chloride permeability test with the main variable of the coating thickness. Three type materials are tested by Polyethylene, epoxy and bare bar. Test results show good chemical protection property and chloride permeability. Polyethylene coated bar is good coating material than any other materials.

  • PDF

TiN 이온 플레이팅한 강판의 내식성에 관한 연구(III)-Ni 및 Ti 하지코팅두께의 영향- (Corrosion Behavior of TiN Ion Plated Steel Plate(III)-Effects of Ni and Ti interlayer thickness-)

  • 한전건;연윤모
    • 한국표면공학회지
    • /
    • 제26권2호
    • /
    • pp.55-62
    • /
    • 1993
  • The effect of interlayer coating thickness of Ni and Ti on corrosion behavior was studied for TiN ion plat-ed steel plate. Interlayer coating was carried out in a single and bi-layer to a various thickness combination prior to final TiN coating. Corrosion behavior was evaluated by anodic polarization test in 1N H2SO4 as well as salt spray test. Ni interlayer coating was effectived in reducing corrosion current density of active region and Ti interlayer coating over Ni coating reduced the anodic corrosion current density by an order of 4 with increasing the thickness of Ti up to$ 3\mu\textrm{m}$. The improvement of corrosion resistance by Ni/Ti interlayer coating was attributed to the effective prevention of penetration of active corrosion agent resulting from the inherent corrosion resistance of Ni and Ti. Putting corrosion behavior was observed from salt spray test result for all specimens and corrosion resistance at salt atmosphere was enhanced with increasing Ni and Ti thickness, Cor-lay TiN coating was spalled out by the generation of corrosion products.

  • PDF