• Title/Summary/Keyword: Salinity intrusion

Search Result 84, Processing Time 0.052 seconds

Rapid estimation of salinity in seawater intrusion zones and correlation analysis between resistivity and salinity (해수침투 지역의 염분농도 분포 파악 및 전기비저항의 상관성분석 사례)

  • Jung, Lae-Chul;Kim, Jung-Ho;Kim, Ki-Seog;Kim, Jong-Hoon;Ahn, Hee-Yoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.307-312
    • /
    • 2007
  • Seawater intrusion in estuarine regions is an important issue in protecting groundwater against salinity increase as well as in protecting construction materials against corrosion. For example, drain water ejected during accelerated consolidation for the improvement of soft ground can cause damages to farm land because the drain water from seawater intrusion zones contains salinity. In this study, we have employed correlation analysis between resistivity value and salinity of in situ pore water. The correlation analysis indicates that resistivity and salinity are in exponential relationship with good correlation. Therefore we suggest that rapid estimation of spatial distribution of NaCl is possible using resistivity data.

  • PDF

The Study of Salinity Distribution at Nakdong River Estuary (낙동강 하구 염분 농도 분포에 관한 연구)

  • Han, Chong-Soo;Park, Sang-Kil;Jung, Sang-Woo;Roh, Tae-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.101-108
    • /
    • 2011
  • The purpose of salinity intrusion due to numerical simulation is analaysis for saline intrusion to the upstream channel in Nakdong River Estuary Barrage(NREB) to get enough fresh water. Conditions that occur salinity intrusion affect by tidal distribution at seas, so salinity concentration changes according to tidal phenomenon. Making this connection cleary can help preventing salinity intrusion. In this study, estimating salinity intrusion to the upstream channel in NREB using EOMSED model, we reexamine NREB's existence. Comparison is also made with observing data. In result, when inflow discharges at $75m^3/s$ is more similar with respect to observing data than $130m^3/s$ at ECOMSED model. Thus, estimations are more precise at little discharges than lots of discharges.

Analysis of Saltwater Intrusion by Flushing Discharge in the Seomjin River Estuary (Flushing 방류로 인한 섬진강 하구부 염수침입 영향분석)

  • Noh, Joonwoo;Lee, Jin-Young;Shin, Jae-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.325-335
    • /
    • 2011
  • Estuary is a transitional zone between river and ocean environment that receives the maritime and riverine influence simultaneously. Estuaries are the most productive habitats because their incoming water provides large quantities of nutrients. The Seomjin River estuary, located in the middle south of Korea, has no barrage and shows natural characteristic of estuary. However, due to dredging and reclamation the environment of the estuary has been changed significantly in the river mouth. In addition, increased freshwater intake in midstream of the Seomjin River results in salinity intrusion. In this paper salinity variation in downstream estuary of the Seomjin River has been simulated and tested using EFDC model. The results of simulation were compared with measured data collected at three points, Culture & Art Center, Sumjin Iron Bridge, and Mokdori, located at 9Km, 14Km, and 15.5Km respectively from downstream estuary. Based on the simulated results, the contribution of the flushing discharge has been evaluated in preventing the salinity intrusion by increasing the discharge flowrates released from the Juam dam.

3D Numerical Modelling of Water Flow and Salinity Intrusion in the Vietnamese Mekong Delta

  • Lee, Taeyoon;Nguyen, Van Thinh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.207-207
    • /
    • 2021
  • The Vietnamese Mekong Delta(VMD) covers an area of 62,250 km2 in the lowest basin of the Mekong Delta where more than half of the country's total rice production takes place. In 2016, an estimated 1.29 million tonnes of Vietnam's rice were lost to the country's biggest drought in 90 year and particularly in VMD, at least 221,000 hectares of rice paddies were hit by the drought and related saltwater intrusion from the South China Sea. In this study, 3D numerical simulations using Delft3D hydrodynamic models with calibration and validation process were performed to examine flow characteristics, climate change scenarios, water level changes, and salinity concentrations in the nine major estuaries and coastal zones of VMD during the 21st century. The river flows and their interactions with ocean currents were modeled by Delft3D and since the water levels and saltwater intrusion in the area are sensitive to the climate conditions and upstream dam operations, the hydrodynamic models considered discharges from the dams and climate data provided by the Coupled Model Intercomparison Project Phase 6(CMIP6). The models were calibrated and verified using observational water levels, salinity distribution, and climate change data and scenarios. The results agreed well with the observed data during calibration and validation periods. The calibrated models will be used to make predictions about the future salinity intrusion events, focusing on the impacts of sea level rise due to global warming and weather elements.

  • PDF

Southward Intrusion of the East Sea Intermediate Water into the Ulleung Basin: Observations in 1992 and 1993

  • Shin, Chang-Woong;Byun, Sang-Kyung;Kim, Cheol-Soo;Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.146-156
    • /
    • 1998
  • Hydrographic data retrieved in the southwestern part of the East Sea in 1992-1993 were analyzed to investigate the probability of southward intrusion of the East Sea Intermediate Water (ESIW) into the Ulleung Basin. The ESIW showed the ranges of 1 to 4$^{\circ}$C in potential temperature, 33.80-34.06 psu in salinity, and 26.9-27.3 kg/m$^3$ in potential density (${\sigma}$$_{\theta}$). The mean depth occupied by the ESIW was 170 m, where the characteristic values of the above three were 2.64$^{\circ}$C , 34.02 psu, and 27.13 kg/m$^3$, respectively. One of the most prominent features of the ESIW was that its salinity changed not only seasonally but also interannually. It was low in summer and high in winter. The salinity within the isopycnal layer of 26.9-27.3 kg/m$^3$ was closely related with the potential vorticity (${\rho}$$_{\theta}^{-1}$ f ${\varrho}$${\rho}_{\theta}$/${\varrho}$z), being in direct proportion to the salinity. This implies that the low-salinity water was thicker than the high-salinity water. The flow path of the ESIW was investigated by tracking the low-salinity or the low-potential vorticity water and by referring to acceleration potential. Careful analysis of the flow path proves that the ESIW intrudes from the north between the Korean coast and Ulleung Island into the Ulleung Basin in summer. Existence of the high-potential vorticity water in the Ulleung Basin is associated with the interruption of the inflow of low-salinity water.

  • PDF

Composite model for seawater intrusion in groundwater and soil salinization due to sea level rise (해수면 상승으로 인한 지하수 해수침투 및 토양 염류화 합성 평가모델)

  • Jung, Euntae;Park, Namsik;Cho, Kwangwoo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.387-395
    • /
    • 2017
  • Sea level rise, accompanied by climate change, is expected to exacerbate seawater intrusion in the coastal groundwater system. As the salinity of saturated groundwater increases, salinity can increase even in the unsaturated soil above the groundwater surface, which may cause crop damage in the agricultural land. The other adverse impact of sea level rise is reduced unsaturated soil thicknesses. In this study, a composite model to assess impacts of sea level rise in coastal agricultural land is proposed. The composite model is based on the combined applications of a three dimensional model for simulating saltwater intrusion into the groundwater and a vertical one dimensional model for simulating unsaturated zone flow and transport. The water level and salinity distribution of groundwater are calculated using the three dimensional seawater intrusion model. At some uppermost nodes, where salinity are higher than the reference value, of the 3D mesh one dimensional unsaturated zone modeling is conducted along the soil layer between the ground water surface and the ground surface. A particular location is judged salinized when the concentration at the root-zone depth exceeds the tolerable salinity for ordinary crops. The developed model is applied to a hypothetical agricultural reclamation land. IPCC RCP 4.5 and 8.5 scenarios were used as sea level rise data. Results are presented for 2050 and 2100. As a result of the study, it is predicted that by 2100 in the climate change scenario RCP 8.5, there will be 7.8% increase in groundwater saltwater-intruded area, 6.0% increase of salinized soil area, and 1.6% in increase in water-logging area.

Analyzing the Effect of Groundwater Dam Construction Using Groundwater Modeling (지하수 모델링을 통한 지하수댐 건설 효과 분석)

  • Kim, Ji-Wook;Lim, Kyung-Nam;Park, Hyun-Jin;Rhee, Bo-Kyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.11-22
    • /
    • 2013
  • SEAWAT, a linked modeling program of Visual MODFLOW was used to analyze the change in groundwater levels and salinity related groundwater dam construction in Cheongsan island, Wando-Gun, Jeollanam-Do. The steady-state model results show the groundwater flow and salinity distribution of the studied area. The groundwater flows from north-west and south-east highlands into the river, located in the middle part of the basin, and is eventually discharged to the ocean. Part of the sea water infiltrates into the river; and through the estuary's alluvium aquifer, the sea water intrusion takes place spreading to about 830 m from the ocean. The transient model results show that after the groundwater dam construction, groundwater levels will rise to a maximum of 2.0 m upstream, and the groundwater storage will increase 21,000 after 10 years. Meanwhile 31% of the total area affected by sea water intrusion will decrease. To conclude, the groundwater dam is a very useful method for a secure water resource in preparation for drought and water shortages in the island regions.

A Study for Reducing Sea Water Intrusion in the Ground Water Dam Operation (지하댐 운영시 발생하는 염수침입 저감기법에 관한 연구)

  • Yun, Sang-Hoon;Park, Jae-Hyeon;Park, Chang-Kun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.97-108
    • /
    • 2004
  • Recently the ground-water development using the ground-water dam was proposed for the efficient use of the limited water resources especially for islands or seaside area. But in operating the ground-water dam adjacent to seaside an excessive pumping causes the sea-water intrusion which is caused by the drawdown of ground-water level. In this study, the effect of the recharging well method to reduce the sea-water intrusion was evaluated, and was applied to the downstream of the Ssangcheon ground-water dam site. The SUTRA model was used to simulate the salinity transport in the unsaturated and saturated zone. As the results, the effect of recharging method on the downstream of the ground-water dam was proven to be very efficient to reduce the salinity in the pumping well, and especially the best result was shown at the case that the recharging well is located at 40∼60m from the cutoff wall and the recharging rate is up to 6∼7%.