• Title/Summary/Keyword: Salinity Intrusion

Search Result 84, Processing Time 0.028 seconds

A Preliminary Assessment of Groundwater Chemistry for Agricultural Water Supply in the Mangyeong-Dongjin Watershed (만경-동진강 유역 지하수의 화학적 특성에 대한 농업용수 측면의 예비적 평가)

  • Choi, Hanna;Kwon, Hong-Il;Yoon, Yoon-Yeol;Kim, Yongcheol;Koh, Dong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 2021
  • We investigated hydrochemical and stable isotope characteristics of groundwater in a large agricultural plain, the Honam plain, to evaluate the adequacy of agricultural water supply. For preliminary assessment for the area, we collected 23 groundwater samples from domestic wells and conducted hydrochemical and water stable isotope analysis. Groundwater in the study area is mainly Ca-HCO3 type resulting from water-rock interactions. Stable oxygen and hydrogen isotopic compositions indicated that recharge water is derived from precipitation while some sampling sites had evaporation signatures. Irrigation water quality using sodium absorption ratio and salinity hazard showed most of the groundwater samples were found to be suitable for irrigation. The groundwater in the southwestern part of the study area was affected by both seawater intrusion and agricultural activities, indicating a higher possibility of groundwater contamination near the coastal areas. Elevated concentrations of nitrate and phosphate ions in the groundwater are considered to be influenced by anthropogenic activities such as fertilizer application. It is expected that this study would be able to provide preliminary information on groundwater quality for agricultural water supply in the Mangyeong-Dongjin watershed.

Artocarpus chaplasha: Establishment and Initial Growth Performance at Elevated Temperature and Saline Stresses

  • Rahman, Md. Siddiqur;Al-Amin, M.;Akter, Salena
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • Like any other natural resources, forest flora may experience the extreme threat of elevated temperature and saline water submergence at different stages of their lives i.e. from germination to maturity due to climate change effects. The overall aim of the study was to measure the effect of higher temperatures along with saline water irrigation on survival and initial growth during seedling stage of Artocarpus chapalasha. The experiment was conducted in temperature- humidity-photoperiod regulated plant growth chamber during stipulated period to measure the growth performance of randomly selected seedlings. Within three different elevated temperatures viz. $30^{\circ}C$, $32^{\circ}C$ and $34^{\circ}C$, the seedlings were given three different saline conditions such as 0.5 g/L, 1.5 g/L and 2.5 g/L NaCl concentrations. Results found from the experiment was that, seedlings of Artocarpus chaplasha reared at different temperatures and saline water treatments showed stunted growth than reared at existing outdoor temperature ($26.31^{\circ}C$) irrigated with regular fresh water. Seedling growth at three different parameters such as height, collar diameter and number of leaves showed that with increasing temperature individuals respond negatively to increasing saline condition. The seedling's growth occurred at every day in height, collar diameter and leaf. However, growth rate reduced later during the observation. The combined effect of high salinity and higher elevated temperature results in seedling mortality. Therefore, Artocarpus chaplasha may not thrive at higher temperature and salinity intrusion at its early growing period in plantation and natural forest areas.

The Effect of Tidal Cycle and River Runoff on the Dynamic of Nutrients in Keum river estuary (금강하구역에서 영양염 거동에 대한 조석 및 담수유출의 영향)

  • Kim, Jong-Gu;Kang, Hoon
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.519-528
    • /
    • 2002
  • This study was to evaluate the impact of river runoff and salt intrusion by tide on nutrient balance of estuary during a complete tidal cycle. 24 hours time series survey was carried out during a spring tide July 2001 on a tidal estuary in the Keum river. Three stations(A,B,C) were set along a transect line of about 10km, which linked the lower part of estuary dyke to the subtidal zone. Surface water was sampled simultaneously at each station every hours f3r the determination of nutrients. Water temperature, pH and dissolved oxygen were measured in situ. Riverine input of silicate and nitrate during ebb tide significantly increased the concentration of all stations. Conversely, during high tide, nutrient concentration were lowered by the mixing of fresh water with sea water Ammonium nitrogen concentration were higher at intertidal zone(Stn.B) due to sewage inflow to Kyeongpo stream and ammonium release under anaerobic conditions. Also, these results was discussed as a biological component that influences the processes of nutrient regeneration within the estuary. Best correlations were found at lower part of estuary dyke(Stn.A) for salinity against DIN(Y=0.121 Sal.+4.97, r2=0.956) and silicate(Y=0.040 Sal.+2.62, r2=0.785). But no significant correlation was found between salinity and ammonium. Unbalanced elemental ratio(N/P, Si/N and Si/P) depended significantly on the import of nutrients (silicate & nitrate nitrogen) from river and stream. The effect of the tidal cycle and river runoff is important that in determining the extend of the variations in nutrient concentrations at all station.

Hydrography and Sub-tidal Current in the Cheju Strait in Spring, 1983 (1983년 춘계 제주해협의 해황과 해류)

  • Chang, Kyung-Il;Kim, Kuh;Lee, Suk-Woo;Shim, Tae-Bo
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.203-215
    • /
    • 1995
  • Two hydrographic surveys along with direct current measurements using drogues and moored current meters were conducted in Cheju Strait during April and May, 1983. The data clearly demonstrate that a branch of the Kuroshio characterized by high temperature and high salinity enters the Cheju Strait after turning around the western coast of Cheju-Do. The width of the current turning west of Cheju-Do is about 60 km and reduces to 20∼30 km in the strait, resulting in a high speed(>10 cm/s) at the western entrance and in the middle of the strait, compared with a low speed (>5 cm/s) west of Cheju-Do. The Tsushima Current water also originating from the Kuroshio shows its influence in the eastern part of the Cheju Strait. Thermohaline fronts formed between the warm current waters and the coastal waters suggest the southward extension of the Yellow Sea Coastal Water west of the Cheju Strait. A warming of the warm current waters occurs in May, while a cooling takes place in other areas. The major freshening and cooling of water take place in the middle of the Cheju Strait in May due to the intrusion of cold and low salinity water from the west of the Cheju Strait.

  • PDF

Cyclic Change of Phytoplankton Community in Mankyeong River Estuary prior to the Completion of the Saemankeum Seawall (새만금 방조제 완공 이전 만경강 하구역 식물플랑크톤 군집의 주기적인 변동)

  • Kim, Young-Geel;Park, Jong-Woo;Jang, Keon-Gang;Yih, Won-Ho
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Eutrophicated water fed through Mankyeong River and Dongjin River into the new Saemankeum Lakemight seriously affect the water quality and phytoplankton community in the lake. To obtain control reference data for the later studies on environmental changes due to the construction of the Saemankeum Sea Wall, we performed a monthly investigation on the physico-chemical properties of the water and phytoplankton community at 3 stations in the Mankyeong River Estuary over 14 months starting from September 1999. Water temperature ranged from $0.3{\sim}32.9^{\circ}C$ due to the typical seasonal variations in temperate on the coasts and salinity exhibited a wide annual range of $0.2{\sim}33.7$ psu along with regular and huge hourly variations according to tidal cycles. Inorganic nutrients were supplied from rivers to the monitoring station and the whole lake. The average concentration of total-N, $6.99\;mg{\cdot}l^{-1}$, was higher than the water quality for agricultural use with peak values occurring in winter. Species composition showed a seasonal succession pattern, where a high diversity was observedin summer and autumn and vice versa in winter. Hourly variations of water properties in the "Mankyeong bridge" Station were quite regular and well in accordance with the daily tidal cycles. The different degree of sea water intrusion during the flood tide at each of the 3 stations exhibited a different range and variation pattern of water temperature and salinity throughout a day. Hourly changes in species composition were in harmony with the daily tidal cycles, resulting in extremely variable spatio-temporal variation.

Effect of climate change and sea level rise on taking water of South Thai Binhirrigation system in Vietnam

  • Nguyen, Thu Hien;Nguyen, Canh Thai
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.222-222
    • /
    • 2015
  • Vietnam is one of the most vulnarable countries affected by climate change and sea level rise. One of the consequences of climate change and sea level rise is the increase of salinity intrusion into the rivers which is challenging to irrigation systems in coastal areas. This indicates the necessary to study the ability of taking water through sluice gates of irrigation systems in coastal zones, especially in the dry season with the effects of climate change and sea level rise in the future. In this paper, Nam Thai Binh irrigation system is selected as a case study. The irrigation system is one of 22 biggest irrigation systems of the Red River delta in Vietnam located in coastal region. The computed duration is selected in dry season to irrigate for Winter-Spring crops. The irrigation water for the study area is taken from different sluice gates along the Red River and the Tra Ly River. In this paper, MIKE-11 model was applied to assess the ability of taking water for irrigation of the study area in current situation and in the context of climate change and sea level rise senario in 2050 (under the medium emissions scenario (B2) published by the Ministry of Natural Resources and Environment of Vietnam published in 2012) with different condition of water availability. The operation of the gates depends on the water levels and sanility conditions. The sanility and water level at different water intake gates of Nam Thai Binh irrigation system were simulated with different senarios with and without climate change and sea level rise. The result shows that, under climate change and sea water level rise, some gates can take more water but some can not take water because of salinity excess and the total water taking from the different gates along the rivers decrease while the water demand is increase. The study indicates the necessary to study quantitatively some recommended solutions in the study area particularly and in coastal region generally in Vietnam to ensure water demand for irrigation and other purposes in the context of climate change and sea level rise in the future.

  • PDF

Evaluation of EFDC for the Simulations of Water Quality in Saemangeum Reservoir (새만금호 수질예측 모의를 위한 EFDC 모형의 평가)

  • Jeon, Ji Hye;Chung, Se Woong;Park, Hyung Seok;Jang, Jeong Ryeol
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.445-460
    • /
    • 2011
  • The objective of this study was to construct and assess the applicability of the EFDC model for Saemangeum Reservoir as a 3D hydrodynamic and water quality modeling tool that is necessary for the effective management of water quality and establishment of conservation measures. The model grids for both reservoir system only and reservoir-ocean system were created using the most recent survey data to compare the effects of different downstream boundary conditions. The model was applied for the simulations of temperature, salinity, water quality variables including chemical oxygen demand (COD), chlorophyll-a (Chl-a), phosphorus and nitrogen species and algal biomass, and validated using the field data obtained in 2008. Although the model reasonably represented the temporal and spatial variations of the state variables in the reservoir with limited boundary forcing data, the salinity level was underestimated in the middle and upstream of the reservoir when the flow data were used at downstream boundaries; Sinsi and Garyuk Gates. In turn, the error caused to increase the bias of water quality simulations, and inaccurate simulation of density flow regime of river inflow during flood events. It is likely because of the loss of momentum of sea water intrusion at downstream boundaries. In contrast to flow boundary conditions, the mixing between sea water and freshwater was well reproduced when open water boundary condition was applied. Thus, it is required to improve the downstream boundary conditions that can accommodate the real operations of the sluice gates.

Groundwater Quality and Pollution Characteristics at Seomjin River Basin: Pollution Source and Risk Assessment (섬진강 주변 지하수의 수질 및 오염특성: 오염원 및 유해성 평가)

  • Na Choon-Ki;Son Chang-In
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.261-272
    • /
    • 2005
  • The groundwaters in the basin of Seomjin River are classified mainly into Na-Cl type with high EC and $NaHCO_3$ type with low EC, and are characterized by enriched $K^+,\;Mg^{2+},\; NO_3^-,\; and\;SO_4\;^{2-}$ contents. The epm fraction of $Na^+Cl^-$ in TDS increases in general with increasing EC of groundwater. The correlation patterns among dissolved ions indicate that $Na^+\;and\;Cl^-$ are derived mainly from intruded seawater, and $K^+,\;Mg^{2-},\;and\;SO_4\;^{2-}$ from anthropogenic source such as a chemical fertilizer. The groundwaters that exceed the recommended limits far agricultural irrigation water contains $23\%\;of\;Cl^-$ reflecting sea-water intrusion, but $50\%\;of\;NO_3^-$ as an anthropogenic pollution, among the wells investigated. In risk assessment of groundwaters by the EC-SAR relationship, only $40\%$ of the groundwaters shows the suitable quality for agricultural irrigation water without any sodium and salinity hazards. Consequently, the pollution sources that cause degradation of groundwater quality in the basin of Seomjin River are the usage of chemical fertilizers and the intrusion of seawater, resulted primarily from the extension of riverward backflow of seawater and secondarily from the overpumping of groundwater.

A Functional Assessment of Nakdong River Barrage for Preventing Salinity Intrusion Using EFDC Model (EFDC를 이용한 낙동강 하구둑 염수침입방지 기능 평가)

  • Son, Yong-Ku;Jeong, Sang-Man;Cha, Kee-Uk;Hur, Young-Teck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2018-2022
    • /
    • 2009
  • 본 연구에서는 낙동강 하구둑의 주요 기능 중에서 용수공급에 지장을 초래하는 염수침입 및 염해피해 방지 효과에 대하여 재평가 하고자 한다. 평가범위는 수치모형을 이용하여 낙동강 하구둑 건설 이전의 지형상황을 재현하고, 하구둑이 없는 조건 하에서 상류유입유량을 변화시키며 외해를 통한 염분 침입 가능범위를 수치모의 함으로서 하구둑의 효과를 간접적으로 평가하였다. 연구에 사용된 수치모형인 EFDC 모형 입력자료로 낙동강 하류부 및 외해 수역에 대한 3차원 지형도를 작성하였고. 평면 직교곡선격자망을 이용하여 대상 지역을 분할하였다. 초기조건으로 전 수역을 담수(염도 0.0psu)로 가정한 상태에서 하류단 경계에 실측 조위 및 해수조건(염도 33psu)을 적용하고 상류단에는 $50m^3/sec$를 적용하여 약 20일간 수행된 결과를 사용하였다. 상류유입유량을 $10^{\sim}250m^3/sec$의 범위로 변화시키고, 하류단 경계조건으로 조위를 적용하여 수치모의를 수행한 결과 염수침입현상에 제일 큰 영향을 미치는 요소는 상류로부터 유입하는 유량인 것으로 나타났다. 그 이외에 담수와 해수의 밀도 차이에 인한 밀도류형성 및 조석에 의한 염수의 밀어올림현상이 하류에서 상류로 염수가 침입하는데 다소의 영향이 있었다. 유입유량이 $250m^3/sec$에서 $10m^3/sec$로 감소할 경우 염분농도 1psu의 도달범위는 11km에서 50km정도로 증가하였다.

  • PDF

The oceanic condition of the Tsushima Warm Current region the southern part of the East Sea (Sea of Japan) In June, 1996

  • Lee Chung Il;Cho Kyu Dae
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.167-174
    • /
    • 2003
  • Oceanic conditions of the Tsushirm Wann Current (1WC) region in the southern area if the East Sea (the Japan Sea) are examined using data obtained from a CREAMS (Circulation Research if the East Asian Marginal Seas) cruise in June 1996. In 1990s, a lower temperature appears in $19\%$ and in this period, two branch of the TWC exist and the first branch of the TWC flows inshore if the Japanese coastal region compared to tfr1t in the other years, especially in the sfr1llower water layer at less th:1n about 2mm. The TWC cored with the higher salinity (>34.6 psu) is clearly observed over the continental shelf zone in the Japanese coastal region and offshore and identified by geostrophic calculation Intrusion if the TWC into the East Sea through the Korea Strait (the Tsushima Strait) makes the density structure in the water column change and the water mass in the TWC region is unstable based on Brunt- Vaisala frequency.

  • PDF