본 논문에서는 자연영상에 대한 돌출영역을 자동으로 검출하고 이를 분할하기 위한 새로운 인공시각집중모델을 제안한다. 제안된 모델은 인간의 생물학적 시각인지 기반이며 주된 특징은 다음과 같다. 먼저 영상의 강도특징과 색상특징을 사용하는 대립과정이론 기반의 새로운 인공시각집중모델의 구조를 제안하고, 돌출영역을 인지하기 위해 영상의 강도 및 색상 특징채널의 정보량을 고려하는 엔트로피 필터를 설계하였다. 엔트로피 필터는 높은 정확도와 정밀도로 돌출영역에 대해 검출 및 분할이 가능하다. 마지막으로 최종 돌출지도를 효율적으로 구성하기 위한 적응 조합 방법 또한 제안되었다. 이 방법은 각 인지 모델로부터 검출된 강도 및 색상 가시성지도에 대하여 평가하며 평가된 점수로부터 얻어진 가중치를 이용해 가시성 지도들을 조합한다. 돌출지도에 대해 ROC분석을 이용한 AUC를 측정한 결과 기존 최신의 모델들은 평균 0.7824의 성능을 나타낸 반면 제안된 모델의 AUC는 0.9256으로서 약 15%의 성능 개선을 보였다. 또한 돌출영역 분할에 대해 F-beta를 측정한 결과 기존 최신의 모델은 0.5178이고 제안된 모델은 0.7325로서 분할 성능 또한 약 22%의 성능 개선을 보였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제15권1호
/
pp.27-34
/
2015
For a vision-based driver assistance system, unusual motion detection is one of the important means of preventing accidents. In this paper, we propose a real-time unusual-motion-detection model, which contains two stages: salient region detection and unusual motion detection. In the salient-region-detection stage, we present an improved temporal attention model. In the unusual-motion-detection stage, three kinds of factors, the speed, the motion direction, and the distance, are extracted for detecting unusual motion. A series of experimental results demonstrates the proposed method and shows the feasibility of the proposed model.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권11호
/
pp.2737-2753
/
2013
In this study, we propose a novel salient object detection strategy based on regional contrast and relative spatial compactness. Our algorithm consists of four basic steps. First, we learn color names offline using the probabilistic latent semantic analysis (PLSA) model to find the mapping between basic color names and pixel values. The color names can be used for image segmentation and region description. Second, image pixels are assigned to special color names according to their values, forming different color clusters. The saliency measure for every cluster is evaluated by its spatial compactness relative to other clusters rather than by the intra variance of the cluster alone. Third, every cluster is divided into local regions that are described with color name descriptors. The regional contrast is evaluated by computing the color distance between different regions in the entire image. Last, the final saliency map is constructed by incorporating the color cluster's spatial compactness measure and the corresponding regional contrast. Experiments show that our algorithm outperforms several existing salient object detection methods with higher precision and better recall rates when evaluated using public datasets.
KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
/
제5B권2호
/
pp.189-195
/
2005
This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.
본 논문에서는 인간의 주의시각(Human Visual Attention)에 기반하여 영상에서 가장 유용하다고 생각되는 관심 영역(Salient Region)을 새로운 방식으로 탐지해내고 관심-객체를 검출하는 방법을 제안한다. 제안하는 시스템은 인간의 주의시각 특성인 주파수와 명도, 색상 특징을 이용하는데, 먼저 주파수-명도 정보를 이용한 특징 지도(Feature map)와 색상 정보를 이용한 특징 지도를 각각 생성 한 후 영상의 특징 점(Saliency Point)을 추출한다. 이렇게 생성된 특징 지도와 특징 점을 이용하여 집중 윈도우의 위치와 크기를 결정하고 집중 윈도우 내에 특징 지도를 결합하여 관심 영역을 탐지하고 해당하는 영역에 대해 관심-객체를 추출한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권3호
/
pp.1418-1433
/
2019
In computer graphics, 3D mesh segmentation is a challenging research field. This paper presents a 3D mesh model segmentation algorithm that focuses on removing exterior salient parts from the original 3D mesh model based on prominent feature points and marching plane. To begin with, the proposed approach uses multi-dimensional scaling to extract prominent feature points that reside on the tips of each exterior salient part of a given mesh. Subsequently, a set of planes intersect the 3D mesh; one is the marching plane, which start marching from prominent feature points. Through the marching process, local cross sections between marching plane and 3D mesh are extracted, subsequently, its corresponding area are calculated to represent local volumes of the 3D mesh model. As the boundary region of an exterior salient part generally lies on the location at which the local volume suddenly changes greatly, we can simply cut this location with the marching plane to separate this part from the mesh. We evaluated our algorithm on the Princeton Segmentation Benchmark, and the evaluation results show that our algorithm works well for some categories.
본 논문에서는 영상 입력 장치로 입력되는 영상 내의 수많은 정보 중에서 지각적으로 중요하다고 여겨지는 현저한(salient) 영역만을 탐지해내는 새로운 방법을 제안한다. 제안하는 방법은 인간이 가지고 있는 시각적 주의 기능에 기본 바탕을 두고 있으며, 영상을 구성하고 있는 정보의 특징에 기반을 두고 있다. 가장 먼저 인간의 시각적 주의 기능에 영향을 미친다고 알려져 있는 몇 가지 특징들이 입력되는 영상의 모든 영역에 걸쳐 추출되어 각각의 특징에 해당되는 특징지도들로 형성된다. 이렇게 형성된 각각의 특징지도들을 구성하고 있는 특징 값들은 이들 각각의 국부적인 경쟁력 특성에 의하여 영상의 각 영역에서의 중요도를 나타내는 값으로 변환되어 중요도지도를 형성하게 된다. 이러한 중요도지도들은 모두 통합되어 하나의 현저함지도를 생성하게 된다. 현저함지도는 영상 내 각 장소의 현저함 정도를 미리 계산된 특징들의 공간적 중요도 측정치에 따른 스칼라 값으로 표시함으로써 영상 내에서 가장 현저한 영역을 찾을 수 있도록 가이드 한다. 제안하는 방법에 의해 시스템을 구성하여 실험한 결과, 인간이 중요하다고 여겨지는 주요 영역을 만족스럽게 탐지해 냄을 알 수 있었다.
본 논문에서는 시공간 정보를 이용하여 동영상에서 움직이는 객체를 자동으로 추출하는 방법을 제안한다. 본 논문에서 제안하는 방법은 다른 영역과 구별되는 현저한 장소에 무의식적으로 집중되는 시각주의 특성을 컴퓨터 시스템에 도입한 대비 지도(contrast map)와 중요 특징점(salient point)을 적용한 것이 큰 특징이라고 할 수 있다. 대비 지도는 밝기(luminance), 색상(color) 그리고 방향성(direction) 3가지의 특징 정보 중 자기와 방향성의 특징을 나타내는 자기 지도(luminance map)와 방향성 지도(directional map)를 결합하여 대비 지도를 생성한다. 또한, 사람이 시각적으로 볼 때 의미 있다고 생각하는 중요 특징점을 웨이블릿 변환을 이용하여 찾아낸다. 이렇게 생성된 대비 지도와 중요 특징점을 이용하여 대략적인 집중윈도우(AW:Attention Window)의 위치와 크기를 결정한다. 다음으로, 동영상의 가장 큰 특징인 움직임 정보를 추정하여 집중윈도우를 객체에 가장 근사하게 축소시키고, 윤곽선 정보를 이용하여 객체를 추출한다. 윤곽선을 추출하기 위해 캐니에지(canny edge)를 사용하였으며, 배경의 윤곽선 제거를 위하여 윤곽선의 차이(DE:Difference of Edge)를 이용하여 가로 후보영역과 세로 후보영역을 추출한다. 추출된 2개의 후보영역을 AND연산과 모폴로지 연산을 이용하여 객체를 자동으로 추출하는 방법을 제안한다. 실험은 카메라가 고정된 상태에서 촬영한 동영상에 대해 이루어 졌으며, 객체와 배경이 효과적으로 분리되는 것을 확인하였다.
기존의 GrabCut 알고리즘은 자동 객체 추출이 아닌 사용자가 객체 영역에 사각형 윈도우를 설정해야하는 알고리즘이다. 본 논문에서는 자동 시스템으로 변환하기 위해 인간의 시각 시스템을 기반으로 영상에서 가장 눈에 띄는 영역을 탐지하는 방법을 연구하였다. 주의 시각 영역인 Saliency Map을 생성하기 위해서 인간이 색채를 감지하는 '적/녹' '황/청'의 대립색설을 기반으로 하는 Lab 색공간을 이용하여 생성한다. 생성된 Saliency Map을 주파수 공간으로 변환하여 저주파 영역에 국부적인 경계를 나타내고 경계를 탐지해내어 Saliency Point를 생성한다. 이렇게 생성된 Saliency Point의 좌표 값을 이용하여 윈도우를 자동으로 생성한 후 GrabCut 알고리즘을 기반으로 객체를 추출하였다. 다양한 영상에 제안한 알고리즘을 적용한 결과 객체 영역에 자동으로 윈도우가 생성되었고 객체가 추출되었다.
플리커, 페이스북과 같은 대용량 소셜 미디어 공유 사이트의 발전으로 이미지 정보가 매우 빠르게 증가하고 있다. 이에 따라 소셜 이미지를 정확하게 검색하기 위한 다양한 연구가 활발히 진행되고 있다. 이미지 태그들의 의미적 연관성을 이용하여 태그기반의 이미지 검색의 정확도를 높이고자 하는 연구를 비롯하여 이미지 단어집(Bag of Visual Words)을 기반으로 웹 이미지를 분류하는 연구도 다양하게 진행되고 있다. 본 논문에서는 이미지에서 배경과 같은 중요도가 떨어지는 정보를 제거하여 중요부분을 찾는 GBVS(Graph Based Visual Saliency)모델을 기존 연구에 사용할 것을 제안한다. 제안하는 방법은 첫 번째, 이미지 태그들의 의미적 연관성을 이용해 1차 분류된 데이터베이스에 SIFT알고리즘을 사용하여 이미지 단어집(BoVW)을 만든다. 두 번째, 테스트할 이미지에 GBVS를 통해서 이미지의 관심영역을 선택하여 테스트한다. 의미연관성 태그와 SIFT기반의 이미지 단어집을 사용한 기존의 방법에 GBVS를 적용한 결과 더 높은 정확도를 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.