• 제목/요약/키워드: Salient Region

검색결과 63건 처리시간 0.021초

돌출영역 분할을 위한 대립과정이론 기반의 인공시각집중모델 (An Artificial Visual Attention Model based on Opponent Process Theory for Salient Region Segmentation)

  • 정기선;홍창표;박동선
    • 전자공학회논문지
    • /
    • 제51권7호
    • /
    • pp.157-168
    • /
    • 2014
  • 본 논문에서는 자연영상에 대한 돌출영역을 자동으로 검출하고 이를 분할하기 위한 새로운 인공시각집중모델을 제안한다. 제안된 모델은 인간의 생물학적 시각인지 기반이며 주된 특징은 다음과 같다. 먼저 영상의 강도특징과 색상특징을 사용하는 대립과정이론 기반의 새로운 인공시각집중모델의 구조를 제안하고, 돌출영역을 인지하기 위해 영상의 강도 및 색상 특징채널의 정보량을 고려하는 엔트로피 필터를 설계하였다. 엔트로피 필터는 높은 정확도와 정밀도로 돌출영역에 대해 검출 및 분할이 가능하다. 마지막으로 최종 돌출지도를 효율적으로 구성하기 위한 적응 조합 방법 또한 제안되었다. 이 방법은 각 인지 모델로부터 검출된 강도 및 색상 가시성지도에 대하여 평가하며 평가된 점수로부터 얻어진 가중치를 이용해 가시성 지도들을 조합한다. 돌출지도에 대해 ROC분석을 이용한 AUC를 측정한 결과 기존 최신의 모델들은 평균 0.7824의 성능을 나타낸 반면 제안된 모델의 AUC는 0.9256으로서 약 15%의 성능 개선을 보였다. 또한 돌출영역 분할에 대해 F-beta를 측정한 결과 기존 최신의 모델은 0.5178이고 제안된 모델은 0.7325로서 분할 성능 또한 약 22%의 성능 개선을 보였다.

Unusual Motion Detection for Vision-Based Driver Assistance

  • Fu, Li-Hua;Wu, Wei-Dong;Zhang, Yu;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권1호
    • /
    • pp.27-34
    • /
    • 2015
  • For a vision-based driver assistance system, unusual motion detection is one of the important means of preventing accidents. In this paper, we propose a real-time unusual-motion-detection model, which contains two stages: salient region detection and unusual motion detection. In the salient-region-detection stage, we present an improved temporal attention model. In the unusual-motion-detection stage, three kinds of factors, the speed, the motion direction, and the distance, are extracted for detecting unusual motion. A series of experimental results demonstrates the proposed method and shows the feasibility of the proposed model.

Salient Object Detection Based on Regional Contrast and Relative Spatial Compactness

  • Xu, Dan;Tang, Zhenmin;Xu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2737-2753
    • /
    • 2013
  • In this study, we propose a novel salient object detection strategy based on regional contrast and relative spatial compactness. Our algorithm consists of four basic steps. First, we learn color names offline using the probabilistic latent semantic analysis (PLSA) model to find the mapping between basic color names and pixel values. The color names can be used for image segmentation and region description. Second, image pixels are assigned to special color names according to their values, forming different color clusters. The saliency measure for every cluster is evaluated by its spatial compactness relative to other clusters rather than by the intra variance of the cluster alone. Third, every cluster is divided into local regions that are described with color name descriptors. The regional contrast is evaluated by computing the color distance between different regions in the entire image. Last, the final saliency map is constructed by incorporating the color cluster's spatial compactness measure and the corresponding regional contrast. Experiments show that our algorithm outperforms several existing salient object detection methods with higher precision and better recall rates when evaluated using public datasets.

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.

영상의 주파수-명도 특성을 이용한 관심 영역 탐지에 관한 연구 (A Study on Detecting Salient Region using Frequency-Luminance of image)

  • 유태훈;이종용;김진수;이상훈
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2012년도 춘계학술논문집 2부
    • /
    • pp.486-489
    • /
    • 2012
  • 본 논문에서는 인간의 주의시각(Human Visual Attention)에 기반하여 영상에서 가장 유용하다고 생각되는 관심 영역(Salient Region)을 새로운 방식으로 탐지해내고 관심-객체를 검출하는 방법을 제안한다. 제안하는 시스템은 인간의 주의시각 특성인 주파수와 명도, 색상 특징을 이용하는데, 먼저 주파수-명도 정보를 이용한 특징 지도(Feature map)와 색상 정보를 이용한 특징 지도를 각각 생성 한 후 영상의 특징 점(Saliency Point)을 추출한다. 이렇게 생성된 특징 지도와 특징 점을 이용하여 집중 윈도우의 위치와 크기를 결정하고 집중 윈도우 내에 특징 지도를 결합하여 관심 영역을 탐지하고 해당하는 영역에 대해 관심-객체를 추출한다.

  • PDF

3D Mesh Model Exterior Salient Part Segmentation Using Prominent Feature Points and Marching Plane

  • Hong, Yiyu;Kim, Jongweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1418-1433
    • /
    • 2019
  • In computer graphics, 3D mesh segmentation is a challenging research field. This paper presents a 3D mesh model segmentation algorithm that focuses on removing exterior salient parts from the original 3D mesh model based on prominent feature points and marching plane. To begin with, the proposed approach uses multi-dimensional scaling to extract prominent feature points that reside on the tips of each exterior salient part of a given mesh. Subsequently, a set of planes intersect the 3D mesh; one is the marching plane, which start marching from prominent feature points. Through the marching process, local cross sections between marching plane and 3D mesh are extracted, subsequently, its corresponding area are calculated to represent local volumes of the 3D mesh model. As the boundary region of an exterior salient part generally lies on the location at which the local volume suddenly changes greatly, we can simply cut this location with the marching plane to separate this part from the mesh. We evaluated our algorithm on the Princeton Segmentation Benchmark, and the evaluation results show that our algorithm works well for some categories.

인간의 상향식 시각적 주의 특성에 바탕을 둔 현저한 영역 탐지 (Detecting Salient Regions based on Bottom-up Human Visual Attention Characteristic)

  • 최경주;이일병
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권2호
    • /
    • pp.189-202
    • /
    • 2004
  • 본 논문에서는 영상 입력 장치로 입력되는 영상 내의 수많은 정보 중에서 지각적으로 중요하다고 여겨지는 현저한(salient) 영역만을 탐지해내는 새로운 방법을 제안한다. 제안하는 방법은 인간이 가지고 있는 시각적 주의 기능에 기본 바탕을 두고 있으며, 영상을 구성하고 있는 정보의 특징에 기반을 두고 있다. 가장 먼저 인간의 시각적 주의 기능에 영향을 미친다고 알려져 있는 몇 가지 특징들이 입력되는 영상의 모든 영역에 걸쳐 추출되어 각각의 특징에 해당되는 특징지도들로 형성된다. 이렇게 형성된 각각의 특징지도들을 구성하고 있는 특징 값들은 이들 각각의 국부적인 경쟁력 특성에 의하여 영상의 각 영역에서의 중요도를 나타내는 값으로 변환되어 중요도지도를 형성하게 된다. 이러한 중요도지도들은 모두 통합되어 하나의 현저함지도를 생성하게 된다. 현저함지도는 영상 내 각 장소의 현저함 정도를 미리 계산된 특징들의 공간적 중요도 측정치에 따른 스칼라 값으로 표시함으로써 영상 내에서 가장 현저한 영역을 찾을 수 있도록 가이드 한다. 제안하는 방법에 의해 시스템을 구성하여 실험한 결과, 인간이 중요하다고 여겨지는 주요 영역을 만족스럽게 탐지해 냄을 알 수 있었다.

대비 지도와 움직임 정보를 이용한 동영상으로부터 중요 객체 추출 (Salient Object Extraction from Video Sequences using Contrast Map and Motion Information)

  • 곽수영;고병철;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1121-1135
    • /
    • 2005
  • 본 논문에서는 시공간 정보를 이용하여 동영상에서 움직이는 객체를 자동으로 추출하는 방법을 제안한다. 본 논문에서 제안하는 방법은 다른 영역과 구별되는 현저한 장소에 무의식적으로 집중되는 시각주의 특성을 컴퓨터 시스템에 도입한 대비 지도(contrast map)와 중요 특징점(salient point)을 적용한 것이 큰 특징이라고 할 수 있다. 대비 지도는 밝기(luminance), 색상(color) 그리고 방향성(direction) 3가지의 특징 정보 중 자기와 방향성의 특징을 나타내는 자기 지도(luminance map)와 방향성 지도(directional map)를 결합하여 대비 지도를 생성한다. 또한, 사람이 시각적으로 볼 때 의미 있다고 생각하는 중요 특징점을 웨이블릿 변환을 이용하여 찾아낸다. 이렇게 생성된 대비 지도와 중요 특징점을 이용하여 대략적인 집중윈도우(AW:Attention Window)의 위치와 크기를 결정한다. 다음으로, 동영상의 가장 큰 특징인 움직임 정보를 추정하여 집중윈도우를 객체에 가장 근사하게 축소시키고, 윤곽선 정보를 이용하여 객체를 추출한다. 윤곽선을 추출하기 위해 캐니에지(canny edge)를 사용하였으며, 배경의 윤곽선 제거를 위하여 윤곽선의 차이(DE:Difference of Edge)를 이용하여 가로 후보영역과 세로 후보영역을 추출한다. 추출된 2개의 후보영역을 AND연산과 모폴로지 연산을 이용하여 객체를 자동으로 추출하는 방법을 제안한다. 실험은 카메라가 고정된 상태에서 촬영한 동영상에 대해 이루어 졌으며, 객체와 배경이 효과적으로 분리되는 것을 확인하였다.

GrabCut의 자동 객체 추출을 위한 저주파 영역 탐지 기반의 윈도우 생성 기법 (Window Production Method based on Low-Frequency Detection for Automatic Object Extraction of GrabCut)

  • 유태훈;이강성;이상훈
    • 디지털융복합연구
    • /
    • 제10권8호
    • /
    • pp.211-217
    • /
    • 2012
  • 기존의 GrabCut 알고리즘은 자동 객체 추출이 아닌 사용자가 객체 영역에 사각형 윈도우를 설정해야하는 알고리즘이다. 본 논문에서는 자동 시스템으로 변환하기 위해 인간의 시각 시스템을 기반으로 영상에서 가장 눈에 띄는 영역을 탐지하는 방법을 연구하였다. 주의 시각 영역인 Saliency Map을 생성하기 위해서 인간이 색채를 감지하는 '적/녹' '황/청'의 대립색설을 기반으로 하는 Lab 색공간을 이용하여 생성한다. 생성된 Saliency Map을 주파수 공간으로 변환하여 저주파 영역에 국부적인 경계를 나타내고 경계를 탐지해내어 Saliency Point를 생성한다. 이렇게 생성된 Saliency Point의 좌표 값을 이용하여 윈도우를 자동으로 생성한 후 GrabCut 알고리즘을 기반으로 객체를 추출하였다. 다양한 영상에 제안한 알고리즘을 적용한 결과 객체 영역에 자동으로 윈도우가 생성되었고 객체가 추출되었다.

이미지 단어집과 관심영역 자동추출을 사용한 이미지 분류 (Image Classification Using Bag of Visual Words and Visual Saliency Model)

  • 장현웅;조수선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권12호
    • /
    • pp.547-552
    • /
    • 2014
  • 플리커, 페이스북과 같은 대용량 소셜 미디어 공유 사이트의 발전으로 이미지 정보가 매우 빠르게 증가하고 있다. 이에 따라 소셜 이미지를 정확하게 검색하기 위한 다양한 연구가 활발히 진행되고 있다. 이미지 태그들의 의미적 연관성을 이용하여 태그기반의 이미지 검색의 정확도를 높이고자 하는 연구를 비롯하여 이미지 단어집(Bag of Visual Words)을 기반으로 웹 이미지를 분류하는 연구도 다양하게 진행되고 있다. 본 논문에서는 이미지에서 배경과 같은 중요도가 떨어지는 정보를 제거하여 중요부분을 찾는 GBVS(Graph Based Visual Saliency)모델을 기존 연구에 사용할 것을 제안한다. 제안하는 방법은 첫 번째, 이미지 태그들의 의미적 연관성을 이용해 1차 분류된 데이터베이스에 SIFT알고리즘을 사용하여 이미지 단어집(BoVW)을 만든다. 두 번째, 테스트할 이미지에 GBVS를 통해서 이미지의 관심영역을 선택하여 테스트한다. 의미연관성 태그와 SIFT기반의 이미지 단어집을 사용한 기존의 방법에 GBVS를 적용한 결과 더 높은 정확도를 보임을 확인하였다.