• Title/Summary/Keyword: Salesman problem

Search Result 211, Processing Time 0.031 seconds

Path Optimization Using an Genetic Algorithm for Robots in Off-Line Programming (오프라인 프로그래밍에서 유전자 알고리즘을 이용한 로봇의 경로 최적화)

  • Kang, Sung-Gyun;Son, Kwon;Choi, Hyeuk-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.66-76
    • /
    • 2002
  • Automated welding and soldering are an important manufacturing issue in order to lower the cost, increase the quality, and avoid labor problems. An off-line programming, OLP, is one of the powerful methods to solve this kind of diversity problem. Unless an OLP system is ready for the path optimization in welding and soldering, the waste of time and cost is unavoidable due to inefficient paths in welding and soldering processes. Therefore, this study attempts to obtain path optimization using a genetic algorithm based on artificial intelligences. The problem of welding path optimization is defined as a conventional TSP (traveling salesman problem), but still paths have to go through welding lines. An improved genetic algorithm was suggested and the problem was formulated as a TSP problem considering the both end points of each welding line read from database files, and then the transit problem of welding line was solved using the improved suggested genetic algorithm.

Closed Walk Ferry Route Design for Wireless Sensor Networks

  • Dou, Qiang;Wang, Yong;Peng, Wei;Gong, Zhenghu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2357-2375
    • /
    • 2013
  • Message ferry is a controllable mobile node with large capacity and rechargeable energy to collect information from the sensors to the sink in wireless sensor networks. In the existing works, route of the message ferry is often designed from the solutions of the Traveling Salesman Problem (TSP) and its variants. In such solutions, the ferry route is often a simple cycle, which starts from the sink, access all the sensors exactly once and moves back to the sink. In this paper, we consider a different case, where the ferry route is a closed walk that contains more than one simple cycle. This problem is defined as the Closed Walk Ferry Route Design (CWFRD) problem in this paper, which is an optimization problem aiming to minimize the average weighted delay. The CWFRD problem is proved to be NP-hard, and the Integer Linear Programming (ILP) formulation is given. Furthermore, a heuristic scheme, namely the Initialization-Split-Optimization (ISO) scheme is proposed to construct closed walk routes for the ferry. The experimental results show that the ISO algorithm proposed in this paper can effectively reduce the average weighted delay compared to the existing simple cycle based scheme.

Model Development for Machining Process Sequencing and Machine Tool Selection (가공 순서 결정과 기계 선택을 위한 모형 개발)

  • Seo, Yoon-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.3
    • /
    • pp.329-343
    • /
    • 1995
  • Traditionally, machining process sequence was influenced and constrained by the design information obtained from CAD data base, i.e., class of operations, geometric shape, tooling, geometric tolerance, etc. However, even though all the constraints from design information are considered, there may exist more than one way to feasibly machine parts. This research is focused on the integrated problem of operations sequencing and machine tools selection in the presence of the product mix and their production volumes. With the transitional costs among machining operations, the operation sequencing problem can be formulated as a well-known Traveling Salesman Problem (TSP). The transitional cost between two operations is expressed as the sum of total machining time of the parts on a machine for the first operation and transportation time of the parts from the first machine to a machine for the second operation. Therefore, the operation sequencing problem formulated as TSP cannot be solved without transitional costs for all operation pairs. When solved separately or serially, their mutual optima cannot be guaranteed. Machining operations sequencing and machine tool selection problems are two core problems in process planning for discretely machined parts. In this paper, the interrelated two problems are integrated and analyzed, zero-one integer programming model for the integrated problem is formulated, and the solution methods are developed using a Tabu Search technique.

  • PDF

Mission Path Planning to Maximize Survivability for Multiple Unmanned Aerial Vehicles based on 3-dimensional Grid Map (3차원 격자지도 기반 생존성 극대화를 위한 다수 무인 항공기 임무경로 계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.365-375
    • /
    • 2012
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for humans. UAVs are currently employed in many military missions and a number of civilian applications. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$_PGA (A-star with Post Smoothing_Parallel Genetic Algorithm) for Multiple UAVs's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and MTSP (Multiple Traveling Salesman Problem). After transforming MRPP into Shortest Path Problem (SPP),$A^*PS$_PGA applies a path planning for multiple UAVs.

Optimal Polling Method for Improving PCF MAC Performance in IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜 시스템에서 PCF 프로토콜의 성능을 향상시키기 위한 최적의 폴링 방식)

  • Choi, Woo-Yong;Lee, Sang-Wan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • A modified PCF(Point Coordination Function) protocol with the optimal polling sequence is defined in detail and shown to improve the efficiency of the conventional PCF protocol in IEEE 802.11 wireless LAN standard. The problem for the optimal polling sequence is formulated as TSP(Travelling Salesman Problem) with the distance values of 1's or 0's. Numerical examples show that the optimal polling sequence increases the capacity of the real-time service such as VoIP(Voice over Internet Protocol).

A Novel Hybrid Intelligence Algorithm for Solving Combinatorial Optimization Problems

  • Deng, Wu;Chen, Han;Li, He
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.199-206
    • /
    • 2014
  • The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.

Robustness for Scalable Autonomous UAV Operations

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2017
  • Automated mission planning for unmanned aerial vehicles (UAVs) is difficult because of the propagation of several sources of error into the solution, as for any large scale autonomous system. To ensure reliable system performance, we quantify all sources of error and their propagation through a mission planner for operation of UAVs in an obstacle rich environment we developed in prior work. In this sequel to that work, we show that the mission planner developed before can be made robust to errors arising from the mapping, sensing, actuation, and environmental disturbances through creating systematic buffers around obstacles using the calculations of uncertainty propagation. This robustness makes the mission planner truly autonomous and scalable to many UAVs without human intervention. We illustrate with simulation results for trajectory generation of multiple UAVs in a surveillance problem in an urban environment while optimizing for either maximal flight time or minimal fuel consumption. Our solution methods are suitable for any well-mapped region, and the final collision free paths are obtained through offline sub-optimal solution of an mTSP (multiple traveling salesman problem).

A Domain-Partition Algorithm for the Large-Scale TSP (Large-Scale TSP 근사해법에 관한 연구)

  • Yoo, Hyeong-Seon;Kim, Hyun-Sng
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.122-131
    • /
    • 1992
  • In this paper an approximate solution method for the large-scale Traveling Salesman Problem (TSP) is presented. The method starts with the subdivision of the problem domain into a number of cluster by considering their geometric characteristic. Each cluster has a limited number of nodes so as to get a local solution. They are linked go give the least pathe which covers the whole domain and become TSPs solution with start-and end-node. The approximate local solution in each cluster are obtained based on geometrical properties of the cluster, and combined to give an overall approximate solution for the larte-scale TSP.

  • PDF

Automatic Generation of Assembly Sequences (조립순서의 자동생성에 관한 연구)

  • Son, Kyoung-Joon;Jung, Moo-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-17
    • /
    • 1993
  • It is well known that an assembly operation is usually constrained by the geometric interference between parts. These constraints are normally presented as AND/OR precedence relationships. To find a feasible assembly sequence which satisfies the geometric constraints is not an easy task because of the TSP(Traveling Salesman Problem) nature with precedence constraints. In this paper, we developed an automated system based on Neural Network for generating feasible assembly sequences. Modified Hopfield and Tank network is used to solve the problem of AND/OR precedence-constrained assembly sequences. An economic assembly sequence can be also obtained by applying the cost matrix that contains cost-reducing factors. To evaluate the performance and effectiveness of the developed system, a case of automobile generator is tested. The results show that the developed system can provide a "good" planning tool for an assembly planner within a reasonable computation time period.

  • PDF

Optimal Underwater Coverage of a Cellular Region by Autonomous Underwater Vehicle Using Line Sweep Motion

  • Choi, Myoung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.1023-1033
    • /
    • 2012
  • An underwater planar covering problem is studied where the coverage region consists of polygonal cells, and line sweep motion is used for coverage. In many subsea applications, sidescan sonar has become a common tool, and the sidescan sonar data is meaningful only when the sonar is moving in a straight line. This work studies the optimal line sweep coverage where the sweep paths of the cells consist of straight lines and no turn is allowed inside the cell. An optimal line sweep coverage solution is presented when the line sweep path is parallel to an edge of the cell boundary. The total time to complete the coverage task is minimized. A unique contribution of this work is that the optimal sequence of cell visits is computed in addition to the optimal line sweep paths and the optimal cell decomposition.