• 제목/요약/키워드: Sales Prediction

검색결과 148건 처리시간 0.025초

티셔츠 상품의 판매패턴과 연관된 상품속성 (Sales Pattern and Related Product Attributes of T-shirts)

  • 채진미;김은희
    • 한국의류학회지
    • /
    • 제44권6호
    • /
    • pp.1053-1069
    • /
    • 2020
  • This study examined the sales pattern relationship with respect to product attributes to propose sales forecasting for fashion products. We analyzed 537 SKU sales data of T-shirts in the domestic sports brand using SAS program. The sales pattern of fashion products fluctuated and were influenced by exogenous factors; therefore, we removed the influence of exogenous factors found to be price discounts and holiday effects as a result of regression analysis. In addition, it was difficult to predict sales using the sales patterns of the same product since fashion products were released as new products every year. Therefore, the forecasting model was proposed using sales patterns of related product attributes when attributes were considered descriptive variables. We classified sales patterns using K-means clustering in order to explain the relationship between sales patterns and product attributes along with creating a decision tree classifier using attributes as input and sales patterns as output. As a result, the sales patterns of T-shirts were clustered into six types that featured the characteristic shape of peak and slope. It was also associated with the combination of product attributes and their values in regards to the proposed sales pattern prediction model.

분양시기 변동에 따른 공동주택 건설공사 현금흐름 예측 (The Prediction of the Apartment Construction Project Cashflow with Changing Sales Point)

  • 배준호;김재준
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2003년도 학술대회지
    • /
    • pp.234-237
    • /
    • 2003
  • 현재 우리나라의 공동 주택 공급은 선분양 방식을 통해 입주자를 모집하고 있다. 선분양 제도는 주택 공급에 기여한 바가 크지만 그에 따른 시장 불안정등의 단점을 나타내었고, 주택시장이 수요자 중심으로 변화하면서 이에 따른 제도차 정책이 요구되고 있다. 이러한 시장변화와 정책변화 요구에 후분양 제도화에 대한 논의가 대두되었다. 후분양 제도화는 결과적으로 공동주택 건설사업에서 주택 수요자의 분양대금 수입의 시기변화의 문제이다. 본 연구는 분양시기 변화에 따른 건설공사 현금흐름 변화를 살펴보기 위하여 현재의 사업성 분석 방법을 고찰하고 시기변화를 고려한 현금흐름 예측 툴을 제작하였다. 분양시기 변화에 따른 분양대금 유입 시기 변화로 초기 대규모 자금이 요구되는 주택건설 사업에서 금융비용의 변화가 사업성에 큰 영향을 미쳤다. 공동주택 건설사업의 안정적인 수행을 위해서는 금융비용 변동을 고려한 정밀한 현금 흐름 예측이 필요하다.

  • PDF

시계열모형에 의한 전력판매량 예측 (Prediction of Electricity Sales by Time Series Modelling)

  • 손영숙
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.419-430
    • /
    • 2014
  • 전력수급의 정확한 예측은 국민들의 일상적 생활 유지, 산업활동, 그리고 국가경영을 위하여 매우 중요하다. 본 연구에서는 시계열모형화에 의해 전력판매량을 예측한다. 실제 자료분석을 통하여 입력시계열로서 냉난방도일과 개입변수로 펄스함수를 사용한 전이함수모형이 다른 시계열모형에 비해서 제곱근평균제곱오차 및 평균절대오차의 의미에서 더 우수하였다.

LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석 (Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM)

  • 이주형;홍준기
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 2022
  • 온라인 쇼핑의 대중화로 인해 많은 의류 상품이 온라인 쇼핑을 통해 소비된다. 의류 상품은 다른 상품과 달리 판매량이 일정하지 않고 날씨의 변화에 따라 판매량이 변화하는 특징이 있다. 따라서 의류 상품의 머신 러닝을 적용한 효율적인 재고 관리 시스템에 대한 연구는 매우 중요하다. 본 논문에서는 의류 업체 'A'로부터 실제 의류 상품 판매량 데이터를 수집하고 판매량 데이터와 같은 시계열 데이터의 예측에 많이 활용되는 LSTM(Long Short-Term Memory)과 Bidirectional-LSTM(Bi-LSTM)의 학습에 사용하여 LSTM과 Bi-LSTM의 판매량 예측 효율을 비교 분석하였다. 시뮬레이션 결과를 통해 LSTM 기술 대비 Bi-LSTM은 시뮬레이션 시간은 더 많이 소요되지만 의류 상품 판매량 데이터와 같은 비주기성 시계열 데이터의 예측 정확도가 동일하다는 것을 확인하였다.

전자상거래에서 지식탐사기법의 활용에 관한 연구 (An Application of Data Mining Techniques in Electronic Commerce)

  • 성태경;주석진;김중한;홍준석
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제14권2호
    • /
    • pp.277-292
    • /
    • 2005
  • This paper uses a data mining approach to develop bankruptcy prediction models suitable for traditional (off-line) companies and electronic (on-line) companies. It observes the differences in the composition prediction models between these two types of companies and provides interpretation of bankruptcy classifications. The bankruptcy prediction models revealed the major variables in predicting bankruptcy to be 'cash flow to total assets' and 'gross value-added to net sales' for traditional off-line companies while 'cash flow to liabilities','gross value-added to net sales', and 'current ratio' for electronic companies. The accuracy rates of final prediction models for traditional off-line and electronic companies were found to be $84.7\%\;and\;82.4\%$, respectively. When the model for traditional off-line companies was applied for electronic companies, prediction accuracy dropped significantly in the case of bankruptcy classification (from $70.4\%\;to\;45.2\%$) at the level of a blind guess ($41.30\%$). Therefore, the need for different models for traditional off-line and electronic companies is justified.

  • PDF

딥러닝과 통계 모델을 이용한 T-커머스 매출 예측 (T-Commerce Sale Prediction Using Deep Learning and Statistical Model)

  • 김인중;나기현;양소희;장재민;김윤종;신원영;김덕중
    • 정보과학회 논문지
    • /
    • 제44권8호
    • /
    • pp.803-812
    • /
    • 2017
  • T-커머스는 양방향 디지털 TV를 기반으로 양방향 데이터방송 기술을 활용하여 상거래를 하는 기술융합형 서비스이다. 채널 번호와 판매상품이 제한된 환경에서 T-커머스의 매출을 극대화 하기 위해서는 각 제품의 시간대별 경쟁력을 고려하여 매출이 최대화 되도록 프로그램을 편성해야 한다. 이를 위해, 본 논문에서는 딥러닝을 이용해 T-커머스에서 각 상품을 각 시간대에 편성하였을 때의 매출을 예측하는 방법을 제안한다. 제안하는 방법은 심층신경망을 이용해 판매 상품과 시간대, 주차, 휴일 여부, 그리고 날씨를 입력 받아 실제 방송으로 편성했을 때 기대되는 매출을 예측한다. 그리고, 통계적 모델과 SVD(Singular Value Decomposition)를 적용하여 판매 데이터의 편중 및 희박성 문제를 완화한다. 실제 T-커머스 운영자인 (주)더블유쇼핑의 판매 기록 데이터에 대하여 실험하였을 때 실제 매출과 예측치의 차이가 0.12의 NMAE(Normalized Mean Absolute Error)를 보여 제안하는 알고리즘이 효과적으로 동작함을 확인하였다. 제안된 시스템은 (주)더블유쇼핑의 T-커머스 시스템 적용되어 방송 편성에 활용되었다.

의료기관 현금흐름과 외부자금조달 간의 관계 (The Relationship of Cash Flow and External Funding in Hospital)

  • 정용모;이용철;임정도
    • 보건의료산업학회지
    • /
    • 제4권1호
    • /
    • pp.87-97
    • /
    • 2010
  • The study analyzed the cash flow and external funding in focusing on the relationship of the two factors in Korean hospitals and some changes in the relationship. The results analyzing this study were summarized as follows: First, the discriminant function of new external funds was generally the ratio of cash flow from operating activities to sales, the ratio of cash flow from investment activities to sales, the ratio of cash flow from financing activities to sales in order. The prediction rate of total discriminant function was more than 92%. Second, in case of Korean hospitals, it was known that the ratio of cash flow from operating activities to sales, particularly the net income to sales was the biggest influencing factor on the decision to external funding.

A Study on the Insolvency Prediction Model for Korean Shipping Companies

  • Myoung-Hee Kim
    • 한국항해항만학회지
    • /
    • 제48권2호
    • /
    • pp.109-115
    • /
    • 2024
  • To develop a shipping company insolvency prediction model, we sampled shipping companies that closed between 2005 and 2023. In addition, a closed company and a normal company with similar asset size were selected as a paired sample. For this study, data of a total of 82 companies, including 42 closed companies and 42 general companies, were obtained. These data were randomly divided into a training set (2/3 of data) and a testing set (1/3 of data). Training data were used to develop the model while test data were used to measure the accuracy of the model. In this study, a prediction model for Korean shipping insolvency was developed using financial ratio variables frequently used in previous studies. First, using the LASSO technique, main variables out of 24 independent variables were reduced to 9. Next, we set insolvent companies to 1 and normal companies to 0 and fitted logistic regression, LDA and QDA model. As a result, the accuracy of the prediction model was 82.14% for the QDA model, 78.57% for the logistic regression model, and 75.00% for the LDA model. In addition, variables 'Current ratio', 'Interest expenses to sales', 'Total assets turnover', and 'Operating income to sales' were analyzed as major variables affecting corporate insolvency.

외식프랜차이즈기업 부실예측모형 예측력 평가 (Evaluating Distress Prediction Models for Food Service Franchise Industry)

  • 김시중
    • 유통과학연구
    • /
    • 제17권11호
    • /
    • pp.73-79
    • /
    • 2019
  • Purpose: The purpose of this study was evaluated to compare the predictive power of distress prediction models by using discriminant analysis method and logit analysis method for food service franchise industry in Korea. Research design, data and methodology: Forty-six food service franchise industry with high sales volume in the 2017 were selected as the sample food service franchise industry for analysis. The fourteen financial ratios for analysis were calculated from the data in the 2017 statement of financial position and income statement of forty-six food service franchise industry in Korea. The fourteen financial ratios were used as sample data and analyzed by t-test. As a result seven statistically significant independent variables were chosen. The analysis method of the distress prediction model was performed by logit analysis and multiple discriminant analysis. Results: The difference between the average value of fourteen financial ratios of forty-six food service franchise industry was tested through t-test in order to extract variables that are classified as top-leveled and failure food service franchise industry among the financial ratios. As a result of the univariate test appears that the variables which differentiate the top-leveled food service franchise industry to failure food service industry are income to stockholders' equity, operating income to sales, current ratio, net income to assets, cash flows from operating activities, growth rate of operating income, and total assets turnover. The statistical significances of the seven financial ratio independent variables were also confirmed by logit analysis and discriminant analysis. Conclusions: The analysis results of the prediction accuracy of each distress prediction model in this study showed that the forecast accuracy of the prediction model by the discriminant analysis method was 84.8% and 89.1% by the logit analysis method, indicating that the logit analysis method has higher distress predictability than the discriminant analysis method. Comparing the previous distress prediction capability, which ranges from 75% to 85% by discriminant analysis and logit analysis, this study's prediction capacity, which is 84.8% in the discriminant analysis, and 89.1% in logit analysis, is found to belong to the range of previous study's prediction capacity range and is considered high number.

Iowa Liquor Sales Data Predictive Analysis Using Spark

  • Ankita Paul;Shuvadeep Kundu;Jongwook Woo
    • Asia pacific journal of information systems
    • /
    • 제31권2호
    • /
    • pp.185-196
    • /
    • 2021
  • The paper aims to analyze and predict sales of liquor in the state of Iowa by applying machine learning algorithms to models built for prediction. We have taken recourse of Azure ML and Spark ML for our predictive analysis, which is legacy machine learning (ML) systems and Big Data ML, respectively. We have worked on the Iowa liquor sales dataset comprising of records from 2012 to 2019 in 24 columns and approximately 1.8 million rows. We have concluded by comparing the models with different algorithms applied and their accuracy in predicting the sales using both Azure ML and Spark ML. We find that the Linear Regression model has the highest precision and Decision Forest Regression has the fastest computing time with the sample data set using the legacy Azure ML systems. Decision Tree Regression model in Spark ML has the highest accuracy with the quickest computing time for the entire data set using the Big Data Spark systems.