• Title/Summary/Keyword: Saint-Venant

Search Result 75, Processing Time 0.022 seconds

An Analysis of Precision of Numerical Solutions by Using the Wave Saint-Versant Equations. (파 Saint-Venant 방정식을 이용한 수치해의 정도분석)

  • 우효섭;김현준
    • Water for future
    • /
    • v.24 no.1
    • /
    • pp.73-81
    • /
    • 1991
  • The Saint-Venant equations of the continuity and momentum principles of one-dimensional, unsteady, open-channel flow are expressed in terms of the phase velocities of constant depth, velocity, and discharge, which results in unique relationships between these phase velocities and channel velocity. A case study shows that these unique relationships developed in this study can be used as an indicator of precision of numerical solutions of the Saint-Venant equations. Further physical interpretation of these relationships and utilization to the numerical analyses of the Saint-Venant equations are to be investigated.

  • PDF

Exact solver of Saint-Venant system with discontinuous geometry (불연속 지형조건에 대한 Saint-Venant 방정식의 정해법)

  • Jung, Jaeyoung;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.256-256
    • /
    • 2021
  • Saint-Venant 방정식은 수평규모가 수심규모보다 큰 천수흐름을 기술하는 수리동역학 모형으로 지난 수십년간 공학적 분야에서 널리 이용되어 왔다. 최근에도 기후변화에 따른 도시 홍수의 위기 증대로 홍수위기관리의 관심이 높아짐에 따라 홍수파(flood wave), 도시침수(urban inundation), 돌발홍수(flash flood) 등의 신속한 예측을 위한 Saint-Venant 방정식의 연구가 활발히 진행되고 있다. 그러나 도시와 같은 인공구조물이 즐비한 상황에서 천수흐름을 해석하는 고전적인 수치해법들은 다양한 불연속 지형들의 존재로 인하여 불안정하며 지배방정식의 정해로 수치해가 잘 수렴하지 않는 문제가 있다. 지난 수년간 이를 해결하기 위해 불연속한 지형을 안정적으로 해결할 수 있는 수치기법의 연구가 진행되어 왔으나, 정해로의 수렴성, 정확성에 관하여 연구가 부족한 실정이다. 본 연구는 수치해법의 주요 구조를 구성하는 Saint-Venant 방정식의 불연속한 지형조건에 대한 리만 문제의 정해를 연구하였다. 쌍곡선형 시스템의 특징을 고려하여 요소파들(elementary waves)의 공식을 유도하였는데, 질량과 에너지의 보존법칙에 위배되지 않으며 운동량이송부의 비선형성과 지형의 불연속에 의한 비엄격성을 고려할 수 있는 조건을 제시하였다. 또한, 유도된 요소파들을 바탕으로 L-M & R-M 커브이론(Han et al. 2014)을 사용할 수 있는 조건과 당위성을 증명하였고, 이를 바탕으로 Saint-Venant 방정식의 정해법을 구성하였다. 리만문제의 다양한 초기조건들을 바탕으로 모든 경우의 정해 구조를 조사하였고, 이를 통해 불연속 지형에 대한 Saint-Venant 지배방정식의 정해가 다수해를 갖을 수 있음을 보였으며, 이를 근사할 수 있는 수치기법의 전략을 소개하였다.

  • PDF

Application of Suggested Equations to determine the Elastic Constants of A Transversely Isotropic Rock from Single Specimen (평면이방성 암석의 단일시험편에서 탄성상수 결정에 제안된 수식들의 적용연구)

  • Park, Chul-Whan;Park, Chan;Jung, Yong-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.153-168
    • /
    • 2010
  • A fifth equation is required to determine the five independent elastic constants of a transversely isotropic rock from compression test of a single specimen. As an approximation proposed by Saint-Venant has been used for long time, it may cause an erroneous result in some cases, especially for specimen with low angle of anisotropy. Three equations were suggested replacing this traditional equation and proved to be applicable by the model analysis in the previous studies. As Saint-Venant's approximation is turned out the same as the first one of them, it has the characteristics that the apparent Young's modulus is monotonously increasing according to the anisotropic angle. The methodology to analyze the elastic constants from four independent strain measurements by uniaxial compressive test of a single standard specimen is concisely described, and the necessity and compatibility of new suggested equations are discussed. Saint-Venant's approximation can determine the elastic constants close to true values and other equations may be unnecessary in specimens with medium to large angle. Nevertheless, they may become applicable because they can produce the almost same amount. For the specimens of small angle of anisotropy, Saint-Venant's approximation may result in out of general ranges or thermodynamic constraints, but other suggested equations can produce the almost true value. Thus they can be applied before other alternative equation is known. The guide map constructed by model study may decide the most compatible one of the three equations.

Mathematical Understanding of the Saint-Venant Approximation in Analysis of a Transverse Isotropy (평면이방성 분석에서 Saint-Venant 근사식의 수학적 해석)

  • Park, Chulwhan;Park, Chan;Park, Jung-Wook;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.363-374
    • /
    • 2016
  • All five independent elastic constants of a transversely isotropic rock sometimes need to be determined from a single specimen. Saint-Venant approximation has been widely used for a long time in the analysis of single specimen test. This paper has proven how this empirical equation can be mathematically transformed into a form of the apparent Young's modulus based on theory of elasticity. The transformed equation is a monotonous function on anisotropic angle and can be useful in the analysis of the in-situ stress measurement in an anisotropic rock mass. The estimations of data in literatures have shown that the measured values of $G^2$ are uniform on anisotropic angles and smaller than that of Saint-Venant's case. This decrement may be caused by sliding of the interface of strata and the decrement rate is inferred to relate well with the combination of bonding condition of strata and strength of rock material. Accumulation of these kinds of studies in the future enables to define the decrement and to determine elastic constants of a transversely isotropic rock from a single specimen from modifying Saint-Venant approximation.

Development of a Combined Model for Flood Inundation Simulation (홍수범람모의를 위한 내외수 연계모형 개발)

  • Yu, Jae-Hong;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, a numerical model combined by a river model and an inland model developed to simulated a flood event. The river model describing an inundation in a river solves the two-dimensional Saint Venant equations with a finite difference method. The inland model based on the ILLUDAS describes the conveyance capacity of a storm sewer system. The combined model is applied to a real situation. The model simulates reasonably the real flood event occurred in a river and inland simultaneously.

A Novel Methodology of Improving Stress Prediction via Saint-Venant's Principle (생브낭의 원리를 이용한 응력해석 개선)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a methodology is proposed to improve the stress prediction of plates via Saint Venant's principle. According to Saint Venant's principle, the stress resultants can be used to describe linear elastic problems. Many engineering problems have been analyzed by Euler-Bernoulli beam(E-B) and/or Kirchhoff-Love(K-L) plate models. These models are asymptotically correct, and therefore, their accuracy is mathematically guaranteed for thin plates or slender beams. By post-processing their solutions, one can improve the stresses and displacements via Saint Venant's principle. The improved in-plane and out-of-plane displacements are obtained by adding the perturbed deflection and integrating the transverse shear strains. The perturbed deflection is calculated by applying the equivalence of stress resultants before and after post-processing(or Saint Venant's principle). Accuracy and efficiency of the proposed methodology is verified by comparing the solutions obtained with the elasticity solutions for orthotropic beams.

Numerical Simulation of Flood Inundation with Quadtree Grid (사면구조 격자를 이용한 홍수범람 모의)

  • Kim, Jong-Ho;Kim, Hyung-Jun;Lee, Seung-Oh;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.45-52
    • /
    • 2007
  • In this study, the flood inundations of the Nam River catchment running through the Uiryeong and Haman regions have been simulated using the numerical model based on quadtree grids. The nonlinear Saint Venant equation is employed as the governing equation for a numerical model in this study. The governing equations are discretized explicitly with a finite difference leap-frog scheme on adaptive hierarchical quadtree grids. Results from this study are compared with those of established numerical models such as the HEC-RAS and the FLUMEN. A numerical model is also simulated according to the frequency variations of flood event. Obtained numerical results show good agreements with them of commercial models. It is found from this study that the flood inundations in the studied area can be occurred at a 500 year frequency event.

Analysis of torsional-bending FGM beam by 3D Saint-Venant refined beam theory

  • Guendouz, Ilies;Khebizi, Mourad;Guenfoud, Hamza;Guenfoud, Mohamed;El Fatmi, Rached
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.423-435
    • /
    • 2022
  • In this article, we present torsion-bending analysis of a composite FGM beam with an open section, according to the advanced and refined theory of 1D / 3D beams based on the 3D Saint-Venant's solution and taking into account the edge effects. The (initially one-dimensional) model contains a set of three-dimensional (3D) displacement modes of the cross section, reflecting its 3D mechanical behaviour. The modes are taken into account depending on the mechanical characteristics and the geometrical form of the cross-section of the composite FGM beam. The model considered is implemented on the CSB (Cross-Section and Beam Analysis) software package. It is based on the RBT/SV theory (Refined Beam Theory on Saint-Venant principle) of FGM beams. The mechanical and physical characteristics of the FGM beam continuously vary, depending on a power-law distribution, across the thickness of the beam. We compare the numerical results obtained by the three-beam theories, namely: The Classical Beam Theory of Saint-Venant (Classical Beam Theory CBT), the theory of refined beams (Refined Beam Theory RBT), and the theory of refined beams, using the higher (high) modes of distortion of the cross-section (Refined Beam Theory using distorted modes RBTd). The results obtained confirm a clear difference between those obtained by the three models at the level of the supports. Further from the support, the results of RBT and RBTd are of the same order, whereas those of CBT remains far from those of higher-order theories. The 3D stresses, strains and displacements, obtained by the present study, reflect the 3D behaviour of FGM beams well, despite the initially 1D nature of the problem. A validation example also shows a very good agreement of the proposed models with other models (classical or higher-order beam theory) and Carrera Unified Formulation 1D-beam model with Lagrange Expansion functions (CUF-LE).

Three-dimensional modelling of functionally graded beams using Saint-Venant's beam theory

  • Khebizi, Mourad;Guenfoud, Hamza;Guenfoud, Mohamed;El Fatmi, Rached
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.257-273
    • /
    • 2019
  • In this paper, the mechanical behaviour of functionally graded material beams is studied using the 3D Saint-Venant's theory, in which the section is free to warp in and out of its plane (Poisson's effects and out-of-plane warpings). The material properties of the FGM beam are distributed continuously through the thickness by several distributions, such as power-law distribution, exponential distribution, Mori-Tanaka schema and sigmoid distribution. The proposed method has been applied to study a simply supported FGM beam. The numerical results obtained are compared to other models in the literature, which show a high performance of the 3D exact theory used to describe the stress and strain fields in FGM beams.