• Title/Summary/Keyword: Safety-critical systems

Search Result 488, Processing Time 0.027 seconds

Critical Success Factors for the Adoption of Health Management Information Systems in Public Hospitals in Zimbabwe

  • Caleb Manjeese;Indira Padayachee
    • Journal of Information Science Theory and Practice
    • /
    • v.11 no.2
    • /
    • pp.82-103
    • /
    • 2023
  • The Zimbabwean healthcare sector faces huge challenges due to increased demands for improved services for a growing number of patients with fewer resources. The use of information and communications technologies, prevalent in many industries, but lacking in Zimbabwean healthcare, could increase productivity and innovation. The adoption of health management information systems (HMISs) can lead to improved patient safety and high-level patient care. These technologies can change delivery methods to be more patient focused by utilising integrated models and allowing for a continuum of care across healthcare providers. However, implementation of these technologies in the health care sector remains low. The purpose of this study is to demonstrate the advantages to be attained by using HMISs in healthcare delivery and to ascertain the factors that influence the uptake of such systems in the public healthcare sector. A conceptual model, extending the technology, organization, and environment framework by means of other adoption models, underpins the study of adoption behavior. A mixed method methodology was used to conduct the study. For the quantitative approach, questionnaires were used to allow for regression analysis. For the qualitative approach, thematic analysis was used to analyse interview data. The results showed that the critical success factors (namely, relative advantage, availability, complexity, compatibility, trialability, observability, management support, information and communication technology expertise, communication processes, government regulation, infrastructure support, organizational readiness, industry and competitive support, external support, perceived ease of use, perceived usefulness, attitude, and intention to use) influenced adoption of HMISs in public hospitals in Zimbabwe.

Incident Investigator's Perspectives on Incident Investigations Conducted in Korea Industry (한국 산업계에서 사고조사 수행 시 사고조사자의 관점에 관한 연구)

  • Kwon, Jae Beom;Kwon, Young Guk
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.58-67
    • /
    • 2021
  • Incident investigation is regarded as a means to improve safety performance. For the prevention of industrial accidents, measures such as providing safety education, enhancing management interest and participation, establishing a safety management system, and conducting inspection of the work site are necessary. In particular, accident investigation activities, which are an important element of safety management, help to prevent similar accidents, thereby minimizing damage and enhancing work safety. They are critical for understanding business-related incidents and the vulnerabilities and opportunities associated with them. Therefore, it is clear that accident investigation activities are important for accident prevention. The primary focus of many incident investigation processes is on identifying the cause of an event. While considerable research has been conducted on potential accident investigation tools there has been little research on including the views and experiences of practitioners in the accident investigation process. In this study, a questionnaire survey was conducted among safety managers in the domestic manufacturing/construction industry to understand the practice of accident investigation. The investigation pertained to companies' accident investigation systems, the competence of investigators, and the identification and recommendations of the cause of accidents. From the analysis results of accident investigations, investigators' competence, the difficulty level of investigations, and the root causes of accidents were identified from the viewpoint of the participants of the accident investigations. In particular, the development of standardized and simple accident investigation methods and their dissemination to companies were found to be necessary for activating the root cause of accidents. Based on this, it can be used as basic data for the development of root cause analysis investigation techniques that are easily applicable to organizations.

Current research trends in HACCP principles (HACCP의 연구동향)

  • Hwang, Tae-Young;Lee, Sun-Yong;Yoo, Jae-Weon;Kim, Dong-Ju;Lee, Je-Myung;Go, Ji-Hun;Kim, Myung-Ho
    • Food Science and Industry
    • /
    • v.54 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Hazard Analysis Critical Control Point (HACCP) systems were developed to ensure a high level of food safety and reduced risk of foodborne illness. This paper focuses on significant issues associated with the implementation of HACCP; it provides an overview on recent literature. The structure of the paper follows six groupings of issues in the international literature of HACCP: (1) comparative studies and unification plan between HACCP and other food safety regulations; (2) verification of the HACCP system's effectiveness in improving food safety; (3) establishment of critical control point (CCP) for various foods HACCP model development; (4) expansion of HACCP application in the various fields and small businesses;(5) the impacts of HACCP on consumer's preferences and firms' financial performance in food industry; (6) HACCP and technological changes. The paper concludes with some suggestions for the future research in order to promote safe food supply chain for global customers.

Tramsmission Method of Periodic and Aperiodic Real-Time Data on a Timer-Controlled Network for Distributed Control Systems (분산제어시스템을 위한 타이머 제어형 통신망의 주기 및 실시간 비주기 데이터 전송 방식)

  • Moon, Hong-ju;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.602-610
    • /
    • 2000
  • In communication networks used in safety-critical systems such as control systems in nuclear power plants there exist three types of data traffic : urgent or asynchronous hard real-time data hard real-time periodic data and soft real-time periodic data. it is necessary to allocate a suitable bandwidth to each data traffic in order to meet their real-time constraints. This paper proposes a method to meet the real-time constraints for the three types of data traffic simultaneously under a timer-controlled token bus protocol or the IEEE 802.4 token bus protocol and verifies the validity of the presented method by an example. This paper derives the proper region of the high priority token hold time and the target token rotation time for each station within which the real-time constraints for the three types of data traffic are met, Since the scheduling of the data traffic may reduce the possibility of the abrupt increase of the network load this paper proposes a brief heuristic method to make a scheduling table to satisfy their real-time constraints.

  • PDF

A Systems Engineering Approach to Ex-Vessel Cooling Strategy for APR1400 under Extended Station Blackout Conditions

  • Saja Rababah;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.32-45
    • /
    • 2023
  • Implementing Severe Accident Management (SAM) strategies is crucial for enhancing a nuclear power plant's resilience and safety against severe accidents conditions represented in the analysis of Station Blackout (SBO) event. Among these critical approaches, the In-Vessel Retention (IVR) through External Reactor Vessel Cooling (IVR-ERVC) strategy plays a key role in preventing vessel failure. This work is designed to evaluate the efficacy of the IVR strategy for a high-power density reactor APR1400. The APR1400's plant is represented and simulated under steady-state and transient conditions for a station blackout (SBO) accident scenario using the computer code, ASYST. The APR1400's thermal-hydraulic response is analyzed to assess its performance as it progresses toward a severe accident scenario during an extended SBO. The effectiveness of emergency operating procedures (EOPs) and severe accident management guidelines (SAMGs) are systematically examined to assess their ability to mitigate the accident. A group of associated key phenomena selected based on Phenomenon Identification and Ranking Tables (PIRT) and uncertain parameters are identified accordingly and then propagated within DAKOTA Uncertainty Quantification (UQ) framework until a statistically representative sample is obtained and hence determine the uncertainty bands of key system parameters. The Systems Engineering methodology is applied to direct the progression of work, ensuring systematic and efficient execution.

Relationship between the Perceptions of ICU Nurses on the Disclosure of Patient Safety Incidents and Communication Barriers (중환자실 간호사의 환자안전사고 소통하기에 대한 인식과 의사소통 장애 간의 관계)

  • Cho, In Sun;Choi, Su Jung
    • Journal of Korean Critical Care Nursing
    • /
    • v.17 no.1
    • /
    • pp.44-56
    • /
    • 2024
  • Purpose : This study sought to explore intensive care unit (ICU) nurses' perceptions regarding the disclosure of patient safety incidents (DPSI) and identify the relationship between the perception of DPSI and communication barriers. Methods : This study used a descriptive research design. A total of 110 ICU nurses from a tertiary hospital were surveyed online between September 14 and October 5, 2022. The mean DPSI score ranged between 1.0 and 4.0, with a higher score indicating a higher perception of DPSI. Results : The mean score for ICU nurses' perceptions of DPSI was 2.92 (SD=0.37). Among the characteristics of ICU nurses, differences were observed in perceptions of DPSI according to gender, age, total work experience, and ICU work experience. Communication barriers among ICU nurses were negatively correlated with negative results as a sub-factor of perceptions of DPSI. Ambiguity in the nurse's position, lack of confidence, differences in perspectives with patients, and inadequate nurse-patient relationships as sub-factors of communication barriers exhibited a negative correlation with negative results as a sub-factor of perceptions of DPSI. Conclusions : ICU nurses' perceptions of DPSI and the sub-factors related to communication barriers are negatively related to DPSI. To improve ICU nurses' perceptions, open and non-punitive circumstances, staff education, practical guidelines, and support systems are required.

Review of GPS and Galileo Integrity Assurance Procedure (GPS와 Galileo의 무결성 보장 방법 조사)

  • Namkyu Woo;Gihun Nam;Heonho Choi;Jiyun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Global Navigation Satellite Systems are expected to meet system-defined integrity requirements when users utilize the system for safety critical applications. While the guaranteed integrity performance of GPS and Galileo is publicly available, their integrity assurance procedure and related methodology have not been released to the public in an official document format. This paper summarizes the integrity assurance procedures of Global Positioning System (GPS) and Galileo, which were utilized during their system development, through a literature survey of their integrity assurance methodology. GPS Block II assures system integrity using the following methods: continuous performance monitoring and maintenance on Space Segment (SS) and Control Segment (CS), through a cause and effect analysis of anomalies and a failure analysis. In GPS Block III, to achieve more stringent integrity performance, safety requirements are integrated into the system design and development from its starting phase to the final phase. Galileo's integrity performance is provided in the Integrity Support Message (ISM) format, as Galileo utilizes a Dual Frequency Multi Constellation (DFMC) Satellite Based Augmentation System (SBAS) and Advanced Receiver Autonomous Integrity Monitoring (ARAIM) to serve safety critical applications. The integrity performance of Galileo is ensured by using a methodology similar to GPS Block II (i.e. continuous performance monitoring and maintenance on the system). The integrity assurance procedures reviewed in this paper can be utilized for a new satellite navigation system that will be developed in the near future.

Analysis of Pedestrian-thrown Distance Pattern by Pedestrian-vehicle Collision Position (보행자와 승용차의 충돌 위치에 따른 전도거리 패턴 분석)

  • Kwon, Sun-min;Chang, Hyun-bong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.90-100
    • /
    • 2017
  • This paper investigates pedestrian-thrown distance pattern by pedestrian-vehicle collision position by madymo-simulation. The simulation were performed for every 2.5 cm interval between center and edge of bumper for various vehicle speeds and vehicle shapes. As a result, two critical points where thrown distance change rapidly were found. First critical point locate where pedestrian's shoulder do not contact the vehicle. Second point locate where the center of gravity of pedestrian are close to edge of bumper. Between 1st and 2nd critical points, thrown distance decrease rapidly where collision points move to the edge of vehicle. In other cases, the thrown distance does not change rapidly. This result gives more accurate guideline for pedestrian collision in traffic safety.

Feasible Scaled Region of Teleoperation Based on the Unconditional Stability

  • Hwang, Dal-Yeon;Blake Hannaford;Park, Hyoukryeol
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • Applications of scaled telemanipulation into micro or nano world that shows many different features from directly human interfaced tools have been increased continuously. Here, we have to consider many aspects of scaling such as force, position, and impedance. For instance, what will be the possible range of force and position scaling with a specific level of performance and stability\ulcorner This knowledge of feasible staling region can be critical to human operator safety. In this paper, we show the upper bound of the product of force and position scaling and simulation results of 1DOF scaled system by using the Llewellyn's unconditional stability in continuous and discrete domain showing the effect of sampling rate.

Three Dimensional Characteristics of the Airflow in Unidirectional Vehicle Tunnels

  • Kim, Sang-Hyun;Kim, Doo-Young;Choi, Pan-Gyu;Lee, Chang-Woo
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.287-300
    • /
    • 2008
  • Airflow distributions along tunnel and over the cross section are critical in selecting installation location of the velocity monitor to obtain the representative data for ventilation as well as fire safety systems. This paper aims at performing CFD and on-site studies to analyze the longitudinal and cross-sectional distributions of the air velocity in tunnels employing longitudinal and semi-transversal ventilation systems. This study can ultimately contribute to selecting the monitor type as well as the optimal installation locations in vehicle tunnel.

  • PDF