• Title/Summary/Keyword: Safety wheel

Search Result 444, Processing Time 0.03 seconds

Vibrational Characteristics of an End Beam of a Freight Cal- on the Taebaek Line (태백선을 주행하는 화차 엔드빔의 진동특성에 관한 연구)

  • 문경호;홍재성;이동형;서정원;함영삼
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.962-967
    • /
    • 2004
  • A bogie is the device that connects a car body and wheel sets of a rail vehicle. It is the critical component that determine:; the running safety, The bogie consists of a frame, suspensions, brakes and wheel sets. Various analyses including a numerical simulation using a finite element method, a static load test, a fatigue test, ai)d r running test should be carried out to design the bogie. However cracks have been found at some end beams of the bogies mounted on the freight cars running with the high speed. The cracks of the end beam results in deterioration of the brake performance an the running safety, A new design has been suggested to solve this problem by ROTEM company and it's performance has been tested in this paper. Numerical simulations and dynamic tests are carried out to figure out the causes of cracks in the conventional bogie, and the vibrational characteristics of the improved bogie are compared with those of the conventional one.

A Study on Structural Safety Analysis of Hub Space (허브스페이스의 구조적 안전성 해석에 대한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.352-359
    • /
    • 2015
  • This study investigates the analysis result of structure and fatigue due to the models of the hub space with bolt joint at wheel and the existence or nonexistence of hub ring as the part of suspension system of vehicle. As the static analysis result, the structural vulnerability can be found at hub bolt and the center of wheel at three models. Model 2 and 3 have nearly same deformation and model 1 can be endured at the least load among three models. As the fatigue analysis result, fatigue lives of three models are same at the severest load of SAE bracket history. As many screw threads of weak bolts are jointed in case of model 1, model 1 is shown to be the weakest at fatigue damage among three models. By the result of this study, model 1 with bolt joint becomes most weakest among three models. As model 2 with no hub ring and model 3 with hub ring have the nearly same states of analysis results, hub ring is shown to have no influence on the safety of automotive driving.

The Effect of KTX Vehicle Size Adjustment on High-Speed Railway Bridge Vibration : Numerical Study (수치해석을 통한 KTX 객차 길이 조정이 고속철도교량의 동적거동 특성에 미치는 영향 연구)

  • Shin, Jeong-Ryol;Kim, Hyun-Min;Sohn, Hoon;Yun, Chung-Bang
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.854-863
    • /
    • 2008
  • A high attention has been paid on the running safety of Korean high-speed train, KTX. In running of KTX on bridge, the running unsafety problem issued from a resonance phenomenon of bridge, which was usually caused by the periodic wheel-loads of train. Therefore, many researches on this running safety of train on bridge have been conducted by domestic or foreign researchers. In this paper, for PSC box-girder bridge which is the representative high-speed railway bridge type, some numerical analyses on the dynamic characteristics of bridge with the non-periodic wheel-loads through vehicle size adjustment were performed. These numerical analyses shows the fact that the resonance phenomenon on bridge was mitigated through vehicle size adjustment. Additional numerical analyses on the vibration reduction of bridge in accordance with the location of size-adjusted vehicle were performed. From these results, it was represented that the adjustment of vehicle size has an effect on the running safety of train as well as the ride comfort.

  • PDF

A Study on Driving Safety Evaluation Criteria of Personal Mobility (퍼스널 모빌리티(Personal Mobility)의 주행안전성 평가지표 연구)

  • Park, Bumjin;Roh, Chang-gyun;Kim, Jisoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.1-13
    • /
    • 2018
  • Divers types of Personal Mobility(PM) are appeared on the market after the Segway is introduced. PMs have propagated very rapidly with their ease of use, and accidents related with PM show a sudden increase. Many studies on the PM are performed as its trend, but dring safety of passengers are excluded. In this study, criteria which can be adopted for PM's driving safety evaluation are reviewed. Also result of driving safety evaluation on 3 types of PM(wheel chair, kickboard, scooter(seating/standing) and walking using deducted criteria is given. COG(Center of the gravity) and SM(Stability Metric) are finally selected two criteria among many of them used in other fields. COG indicates how the center of mass deviates from the direction of the gravity. SM is a normalized value of generated force when PM moves as internal force, angular momentum, and ground reaction force. 0 means stop, and negative value means rollover, so it can be used for safety evaluation of PM. Average and standard deviation of measurement are standard of safety on the COG analysis. Wheel chair is the most safe and kickboard is the most unstable on the COG analysis. Wheel chair is also ranked as top safe on the SM analysis. Among two riding types(seating and standing) on the scooter, seating type is evaluated more safer than standing type. It is proposed that more various type of PMs are need to get safety evaluation for drivers and devices themselves together.

Traffic Safety & Passenger Comforts of a Suspension Bridge Considering Seismic Loads (고속열차 주행 시 지진하중을 고려한 현수교의 주행안전성 및 승차감 분석)

  • Kim, Sung-Il;Kim, Dong-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • The estimation of traffic safety and passenger comfort when the train is running on the bridge is a estimation unique to the railway bridge. The standards for such estimation are included in the Eurocode, the Shinkansen design criteria, and the design guideline of the Honam High-speed railway. The items are bridge responses including vertical displacement of bridge, vertical acceleration, and slab twist. In principle, a direct estimation based on the train responses has to take place. However, the estimation based on the bridge responses can be seen as an indirect estimation procedure for the convenience of the bridge designer. First, it is general practice that traffic safety can be verified as a derailment coefficient or wheel load decrement The general method of estimating passenger comfort is to calculate the acceleration within the train car-body. Various international indexes have been presented for this method. In the present study, traffic safety and passenger comforts are estimated directly by bridge/train interaction analysis. The acceleration and wheel load decrement are obtained for the estimation of traffic safety and passenger comforts of a suspension bridge which has main span length of 300m. Also, the consideration of seismic load with simultaneous action of moving train is done for bridge/train/earthquake interaction analysis.

Development of HST electronic control system for combine (II)- Outdoor tests for control Characteristics - (콤바인 HST 전자제어시스템 개발- 제어특성 실외시험 -)

  • Seo, Sin-Won;Huh, Yun-Kun;Lee, Je-Yong;Lee, Chang-Kyu;Bae, Keun-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.121-128
    • /
    • 2011
  • I/An electro-hydraulic transmission having advantages of convenience, safety, simple linking and high power, and an electronic control system were designed and fabricated. In this study, characteristics of the control system were investigated through outdoor tests for evaluation of installation of the system on a combine. Major findings were as followings. 1. Experiment for performance evaluation of the control system was conducted on concrete road. With steering lever in neutral position, driving HST swash plate and left/right wheel speed increased in proportion to driving lever angle. In case of steering control, steering swash plate angle changed in proportion to steering lever angle. This should cause increase in outer wheel speed, but it was observed that HST swash plate was controlled toward neutral to maintain the speed before steering. As a result, speed before steering was maintained despite the change in outer wheel speed by steering HST swash plate angle change. 2. It was observed that the HST system enabled steering with outer wheel maintained at constant speeds while inner wheel speed decreased, which was more stable than conventional mechanical links. In addition, for the selected 5 criteria, experiment showed satisfactory results and it was judged that installation on real vehicle would be feasible. 3. The control system showed response property of appropriate forward/reverse movement and lift/right steering, without causing any problems during experiment on concrete. Result of response property experiment on field operation also showed appropriate control over forward/reverse movement and left/right steering.

A Method for Driver Recognition and Steering Wheel Turning Direction Estimation Using Smartwatches (스마트워치를 이용한 자동차운전자 구분 및 핸들의 회전 방향 인지 기법)

  • Huh, Joon;Choi, Jaehyuk
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.844-851
    • /
    • 2019
  • As wearable technology is becoming more common and a part of our lives, there have been many efforts to offer various smart services with wearable devices, such as motion recognition, safety of driving, and so on. In this paper, we present a method that exploits the 9-axis inertial sensors embedded in a smartwatch to identify whether the user is a vehicle driver or not and to estimate the steering wheel turning direction in the vehicle. The system consists of three components: (i) position recognition, (ii) driver recognition, and (iii) steering-wheel turning detection components. We have developed a prototype system for detecting user's motion with Arduino boards and IMU sensors. Our experiments show high accuracy in recognizing the driver and in estimating the wheel rotation angle. The average experimental error was $11.77^{\circ}$ which is small enough to perceiver the turning direction of steering-wheel.

Stability Evaluation of Track on Conventional Line According to Traveling Tilting Train (틸팅차량 주행에 따른 기존선 궤도의 주행안정성 평가)

  • Park, Yong-Gul;Eum, Ki-Young;Choi, Jung-Youl;Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.701-708
    • /
    • 2007
  • A tilting train, which was developed to run the curve section without reducing the speed and compromising the riding quality, can improve the speed so as to reduce the travel time, compared to the existing trains. Then the force generated by the train operation to the track is in proportion to train operation speed, which means the track shall bear the increased force as much as the increase in train operation speed. Particularly, wheel load and lateral wheel load generated by train operation and distributed to the rail tend to cause the track to suffer the strain and furthermore the severe disaster such as derailment. To deal with such problem and ensure the train will run safety and stably, the tolerance in wheel load change, lateral wheel load and derailment coefficient was determined for quantitative evaluation of the train operation stability. In this study, derailment coefficient of inner and outer rail at existing curve section of tilting train was determined to evaluate the curve radius, possibility of acceleration and the need of rail improvement, which was then compared with the existing traditional train and high speed train. Conducting the quantitative evaluation of dynamic wheel load and lateral wheel load of each train, which was based on field survey, derailment coefficient and static & dynamic wheel load change, which serve the evaluation criteria of train operation stability, were determined for comparison with the standards, thereby analyzing the stability of the tilting train.

A Study for an Early Detection Method on Altering Course of a Target Ship using the Steering Wheel Signal (조타기 신호를 이용한 선회조기감지 방안에 대한 연구)

  • Jung, Chang-Hyun;Hong, Tae-Ho;Park, Gyei-Kark;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • If we were in a head-on or crossing situation with a target ship and did not know the target ship's intention to change her course, we might be confused about our decision making to change our course for collision avoidance and be in a danger of collision. In order to solve these problems, we need to develop an automatic system which enables mariners to easily detect a change in the target ship's course and efficiently avoid being on a collision course. In this paper, we proposed an early detection method on altering course of a target ship using the steering wheel signal. This method will contribute to the reduction of collision accidents and also be used to the VTS system and the analysis of marine accidents.