• Title/Summary/Keyword: Safety wheel

Search Result 444, Processing Time 0.029 seconds

Creative Design of Cap for Wheel and Axle of Railway Vehicle by Using TRIZ/CAE (TRIZ/CAE를 활용한 철도차량 윤축용 캡의 창의적 설계)

  • Huh, Yong-Jeong;Kim, Jae-Min;Hong, Sung-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2581-2587
    • /
    • 2013
  • This paper aims at the design of wheel and axle with cap. The cap is conceptually designed by using TRIZ/CAE. Wheel axle is used at railway vehicle to safety and it is always investigated to reduce the railway vehicle weight. The cap has hollow shaft with the material of SM45C. Cap is located in the bearing seat of wheel and axle. The cap becomes durable within the allowable stress of EN13103, 13104 standard. In this study, the strength of wheel and axle with cap becomes higher than that of hollow shaft. The weight of wheel and axle with cap becomes lower by about 6.75 percent than that of solid shaft. The confidence of wheel and axle with cap can be improved by comparing with solid and hollow shafts.

Design and Safety Performance Evaluation of the Riding Three-Wheeled Two-Row Soybean Reaper

  • Jun, Hyeon-Jong;Choi, Il-Su;Kang, Tae-Gyoung;Kim, Young-Keun;Lee, Sang-Hee;Kim, Sung-Woo;Choi, Yong;Choi, Duck-Kyu;Lee, Choung-Keun
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.288-293
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the key factors in designing a three-wheeled two-row soybean reaper (riding type) that is suitable for soybean production, and ensure worker safety by proposing optimal work conditions for the prototype of the designed machine in relation to the slope of the road. Methods: A three-wheeled two-row soybean reaper (riding type) was designed and its prototype was fabricated based on the local soybean-production approach. This approach was considered to be closely related to the prototype-designing of the cutter and the wheel driving system of the reaper. Load distribution on the wheels of the prototype, its minimum turning radius, static lateral overturning angle, tilt angle during driving, and The working and rear overturning (back flip) angle were measured. Based on the gathered information, investigations were conducted regarding optimal work conditions for the prototype. The investigations took into account driving stability and worker safety. Results: The minimum ground clearance of the prototype was 0.5 m. The blade height of the prototype was adjusted such that the cutter was operated in line with the height of the ridges. The load distribution on the prototype's wheels was found to be 1 (front wheel: F): 1.35 (rear-left wheel: RL): 1.43 (rear-right wheel: RR). With the ratio of load distribution between the RL and RR wheels being 1: 1.05, the left-to-right lateral loads were found to be well-balanced. The minimum turning radius of the prototype was 2.0 m. Such a small turning radius was considered to be beneficial for cutting work on small-scale fields. The sliding of the prototype started at $25^{\circ}$, and its lateral overturning started at $39.3^{\circ}$. Further, the critical slope angle for the worker to drive the prototype in the direction of the contour line on an incline was found to be $12.8^{\circ}$, and the safe angle of slope for the cutting was measured to be less than $6^{\circ}$. The critical angle of slope that allowed for work was found to be $10^{\circ}$, at which point the prototype would overturn backward when given impact forces of 1,060 N on its front wheel. Conclusions: It was determined that farmers using the prototype would be able to work safely in most soybean production areas, provided that they complied with safe working conditions during driving and cutting.

A Fundamental Study on the Control of Ride Comfort and Attitude for In-wheel Motor Vehicles (인휠모터 구동차량의 승차감 및 자세제어를 위한 기초적 연구)

  • Kim, Y.R.;Park, C.;Wang, G.N.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-97
    • /
    • 2012
  • It is being accelerated to develop environment-friendly vehicles to solve problems on the energy and environment of earth. The electric driving motor commonly installed in these vehicles has the excellent control capability such as fast response and accurate generation to torque control command. Especially, in-wheel motor has the additional merit such as independently driving each wheel in vehicle. Recently, being developed various control algorithm to enhance the safety and stability of vehicle motion using actively the merits of in-wheel motor. In addition to that, being issued the possibility of enhancing the ride comfort and attitude of vehicle motion such as pitching and rolling. In this paper, investigate the theoretical relationship between the braking/driving force and the motion of sprung mass of vehicle and propose the control method to enhance the ride comfort and attitude of vehicle motion. The proposed control method is proved through the simulation with vehicle model provided by TruckSim software which is commercial one and specializes in vehicle dynamics.

A STUDY ON THE FATIGUE LIFE PREDICTION OF GUIDEWAY VEHICLE COMPONENTS (안내궤도 차량 부품의 피로 수명 예측에 관한 연구)

  • Lee, Soo-Ho;Park, Tae-Won;Yoon, Ji-Won;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Joong-kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.997-1002
    • /
    • 2007
  • A guideway vehicle is used in automobile, semiconductor and LCD manufacturing industries to transport products efficiently. Since the operating speed of the guideway vehicle should be increased for maximum productivity, the weight of the vehicle has to be reduced. This may cause parts in the system to fail before the life of the system. Therefore estimation of the fatigue life of the parts becomes an important problem. In this study, the fatigue life of the driving wheel in the guideway vehicle is estimated using a S-N curve. To obtain the fatigue life of a part, the S-N curve, load time history applied on a driving wheel and material property are required. The S-N curve of the driving wheel is obtained using the fatigue experiment on wheels. Load time history of the wheel is obtained from multibody dynamics analysis. To obtain the material properties of the driving wheel, which is composed of aluminum with urethane coating, a compression hardware testing has been done with the static analysis of the FE model. The fatigue life prediction using computational analysis model guarantees the safety of the vehicle at the design stage of the product.

  • PDF

THE MECHATRONIC VEHICLE CORNER OF DARMSTADT UNIVERSITY OF TECHNOLOGY-INTERACTION AND COOPERATION Of A SENSOR TIRE, NEW LOW-ENERGY DISC BRAKE AND SMART WHEEL SUSPENSION

  • Bert Breuer;Michael Barz;Karlheinz Bill;Steffen Gruber;Martin Semsch;Thomas Strothjohann;Chungyang Xie
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Future on-board vehicle control systems can be further improved through new types of mechatronic systems. In particular, these systems' capacities for interaction enhance safety, comfort and economic viability. The Automotive Engineering Department (fzd) of darmstadt University of Technology is engaged in research of the mechatronic vehicle corner, which consists of three subsystems: sensor tire, electrically actuated wheel brake and smart suspension. By intercommunication of these three systems, the brake controller receives direct, fast and permanent information about dynamic events in the tire contact area provided by the tire sensor as valuable control input. This allows to control operation conditions of each wheel brake. The information provided by the tire sensor for example help to distinguish between staightline driving and cornering as well as to determine $\mu$-split conditions. In conjunction with current information of dynamic wheel loads, tire pressures and friction tyre/road, the ideal brake force distribution can be achieved. Alike through integration of adaptive suspension bushings, elastokinematic behaviour and wheel positions can be adapted to manoeuver-oriented requirements.

Ergonomic Optimization of the Handle Height and Distance for the Two-Vertical Type Handles of the 4-Wheel Cart (4륜 운반차 수직형 손잡이에서 인간공학적 최적 높이 및 간격 결정)

  • Song, Young Woong
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.123-129
    • /
    • 2013
  • Among various manual materials handling tasks, pushing/pulling was known to be one of the risk factors for the low back and shoulder musculoskeletal disorders (MSDs). This study was conducted to find out an optimal solution set of the handle height and distance for 4-wheel cart with two vertical handles. Ten male college students participated in the pushing force measurement experiment. The face-centered cube design, one of the central composite designs, was applied for the experiment, and the isometric voluntary pushing force was measured in 9 treatment conditions. The second order response surface model was predicted by using the pushing strength as a response variable, and the handle height and distance as independent factors. According to the 2nd order response model, the handle height and distance showed nonlinear relationship with the isometric pushing strength. To maximize the 2nd order response model (pushing force), the handle height and distance were optimized. The optimal handle height was 'xyphoid process height - stature', and the optimal handle distance was '$1.25{\times}shoulder$ width'. When calculated using the anthropometric data of the subjects of this study, the optimal handle height was $115.4{\pm}3.4$ cm, slightly higher than the elbow height, and the handle distance was $52.9{\pm}2.3$ cm.

A Study on the Analysis of Design Parameters for Development of LSD (다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구)

  • Shin, Young-Ho;Lee, Dong-Won;Shin, Chun-Se
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

A Parametric Study about Blade Shapes and Blade Numbers of Water Wheel Type Tidal Turbine by Numerical Method

  • Nguyen, Manh Hung;Jeong, Haechang;Jhang, Sung-su;Kim, Bu-gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.3
    • /
    • pp.296-303
    • /
    • 2016
  • In this paper, a numerical experiment on a tidal turbine was performed based on a water wheel design using the commercial CFD code ANSYS-CFX to contribute to the development of water wheels. The water wheel type tidal turbine was studied with different numbers of rotor blades (including ten, twelve and twenty blades types) and with different blade shapes (Straight, Curved and Zuppinger types) for comparison at several values of tip speed ratio (TSR) ranging from 0.7 to 1.2. The numerical results indicated that the 10-bladed type and the Straight-bladed type turbines absorb the highest power efficiency, up to 43 % at TSR 0.9. In addition, the 20-bladed and the Curved-bladed types showed the lowest performances in all cases of TSRs comparing with the others. Besides that, it was found that this turbine operates much effectively at low range of TSR, especially at TSRs 0.9 and 1 for all cases of blade shapes and all numbers of blades.

Fatigue Crack Growth Rates of a Railway Wheel Steel under Mixed Mode Loading Conditions (혼합모드 하중조건에서의 철도 차륜재의 피로균열 실험에 관한 연구)

  • Kim, Taek-Young;Lee, Man-Suk;You, In-Dong;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.8-13
    • /
    • 2013
  • Fatigue crack growth tests were conducted on urban railway wheel steel under mode I and mixed-mode conditions. Fatigue crack growth rates were evaluated in terms of equivalent stress intensity factor ranges, using both the extended and projected crack lengths. The equivalent stress intensity factor range with the growth rate results obtained under mode I loading conditions can be used to predict the crack growth rate under mixed-mode loading conditions. Extended crack length rather than projected crack length is appropriate for the prediction of the crack growth rate under the mixed-mode loading conditions.

Yaw Moment Control for Modification of Steering Characteristic in Rear-driven Vehicle with Front In-wheel Motors (전륜 인휠모터 후륜구동 차량의 선회 특성 변형을 위한 요모멘트 제어)

  • Cha, Hyunsoo;Joa, Eunhyek;Park, Kwanwoo;Yi, Kyongsu;Park, Jaeyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.6-13
    • /
    • 2021
  • This paper presents yaw moment control for modification of steering characteristic in rear-driven vehicle with front in-wheel motors (IWMs). The proposed control algorithm is designed to modify yaw rate response of the test vehicle. General approach for modification of steering characteristic is to define the desired yaw rate and track the yaw rate. This yaw rate tracking method can cause the chattering problem because of the IWM actuator response. Large overshoot and settling time in IWM torque response can amplify the oscillation in control input and yaw rate. To resolve these problems, open-loop IWM controller for cornering agility was designed to modify the understeer gradient of the vehicle. The proposed algorithm has been investigated via the computer simulations and the vehicle tests. The performance evaluation has been conducted on dry asphalt using E-segment test vehicle. The performance of the proposed algorithm has been compared to general yaw rate tracking algorithm in the vehicle tests. It has been shown that the proposed control law improved the cornering agility without chattering problem.