• Title/Summary/Keyword: Safety shutdown

Search Result 172, Processing Time 0.017 seconds

A Study on the Improvement of Operation Performance of Wet Bell Diving System in the Salvage Ship (고장 사례 분석을 통한 수중함용 디젤엔진 건전성에 관한 연구)

  • Choi, Woo-Suk;Min, Tae-Kyu;Kim, Byeong-Ho;Chang, Ho-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.98-106
    • /
    • 2020
  • This study examined the integrity of diesel engines for underwater vessels through failure analysis, analyzed the causes of abnormal diesel engine stoppage during building and examined the integrity of secondary damages. The diesel engine stoppage was analyzed by checking the temperature change of the piston before and after the abnormality and checking the damage. In addition, in order to analyze the secondary damage caused by the explosion, the tensile and compressive stresses transmitted to the crankshaft, the core part of the diesel engine, were calculated, and the stress distribution was examined through finite element analysis, but the crankshaft was designed by safety. It was confirmed that there was no damage to the crankcase even when the diesel engine was taken out of the ship and closely inspected. The integrity of the crank shaft was verified in advance for the occurrence of diesel engine emergency shutdown accidents through this research result. Therefore, the inspection and restoration were carried out to the minimum extent, and the quality of diesel engines was secured. This study is expected to be used as a reference for ensuring soundness in any future review of diesel engine quality problems.

An Analysis of the Loss of Residual Heat Removal System Event for Pressurized Water Reactor at Reduced Inventory Operation (가압경수로의 저수위 운전시 잔열제거계통 상실사고에 대한 분석)

  • Han, Kee-Soo;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.645-660
    • /
    • 1995
  • The loss of Residual Heat Removal System (RHRS) event during reduced inventory operation for the Korean Standard Nuclear Power Plants (KSNPPS) is simulated by RELAP5/MOD3 and RELAP5/MOD3.1 Tn cases are considered : Base case for an intact Reactor Coolant System (RCS) with no tent and a vent case for an open system. Comparative simulations of base case are peformed by RELAP5/MOD3 and RELAP5/MOD3. 1 computer codes. The results of too simulations are generally in good qualitative and quantitative agreement. However, since the results of RELAP5/MOD3 simulation reveals the deficiency of RELAP5/MOD3 wall heat model, the RELAP5/AOD3.1 computer code is used for the simulation of the vent case. The analysis result of base case show that two steam generators are insufficient to remove decay heat at one day after shutdown, where the RCS is closed. The RCS pressure increased continuously and reached the RCS temporary boundaries design pressure of 0.24 MPa around 4,000 seconds. In the vent case with a flow capacity equivalent to three times the capacity of Pressurizer Safety Valve (PSV), it is shown that the RCS Pressure does not reach 0.24 MPa and core uncovery does not occur until 10,000 seconds. The detailed discussions on the results of this study suggest the feasibility of RELAP5/AOD3.1 as an analysis tool for the simulation of the loss of RHRS event at reduced inventory operation. The results of this study also provide insight for the determination of proper vent capacity.

  • PDF