• Title/Summary/Keyword: Safety of anchoring

Search Result 39, Processing Time 0.03 seconds

Why do Workers Generate Biased Risk Perceptions? An Analysis of Anchoring Effects and Influential Factors in Workers' Assessment of Unsafe Behavior

  • Zunxiang Qiu;Quanlong Liu;Xinchun Li;Yueqian Zhang
    • Safety and Health at Work
    • /
    • v.15 no.3
    • /
    • pp.300-309
    • /
    • 2024
  • Background: Risk perception plays a crucial role in workers' unsafe behaviors. However, little research has explored why workers generate biased risk perceptions, namely underestimating or overestimating the risks of unsafe actions. Cognitive biases in risk perception arise from uncertainties about the dangers of unsafe behaviors. As a typical heuristic strategy, the anchoring effect is critical in decision-making under uncertain conditions. Consequently, this study empirically analyzed the influence of anchoring effects on workers' risk perception. Methods: In 2022, a survey was conducted with 1,418 coal mine workers from Shanxi Province, China. The survey instruments assessed workers' risk perception of unsafe behavior, anchoring effects, need for cognition, and safety knowledge. Multivariable linear regression models were employed to analyze the associations among these variables. Results: The findings verified the proposed anchoring effects. Specifically, experimenter-provided high-risk anchors led workers to overestimate unsafe behavior risks, thus reducing their tendency to engage in such behavior. In contrast, experimenter-provided low-risk anchors and accident-injury experiences (self-generated anchors) decreased workers' risk perception, increasing their propensity to engage in unsafe behavior. Additionally, workers' safety knowledge and need for cognition significantly affected anchoring effects. Conclusion: This research enhances workplace safety studies by applying the anchoring effect from psychology to risk perception research. Suggestions for improving risk perception encompass implementing hazard warnings, fostering safety education, and providing training. Furthermore, managers should give special attention to workers with accident-injury experience and promptly correct their accident fluke mentality, thereby improving overall risk awareness.

Test on the anchoring components of steel shear keys in precast shear walls

  • Shen, Shao-Dong;Pan, Peng;Li, Wen-Feng;Miao, Qi-Song;Gong, Run-Hua
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.783-791
    • /
    • 2019
  • Prefabricated reinforced-concrete shear walls are used extensively in building structures because they are convenient to construct and environmentally sustainable. To make large walls easier to transport, they are divided into smaller segments and then assembled at the construction site using a variety of connection methods. The present paper proposes a precast shear wall assembled using steel shear keys, wherein the shear keys are fixed on the embedded steel plates of adjacent wall segments by combined plug and fillet welding. The anchoring strength of shear keys is known to affect the mechanical properties of the wall segments. Loading tests were therefore performed to observe the behavior of precast shear wall specimens with different anchoring components for shear keys. The specimen with insufficient strength of anchoring components was found to have reduced stiffness and lateral resistance. Conversely, an extremely high anchoring strength led to a short-column effect at the base of the wall segments and low deformation ability. Finally, for practical engineering purposes, a design approach involving the safety coefficient of anchoring components for steel shear keys is suggested.

A Study on the Safety of Anchoring for Ulsan M-10 Anchorage (울산항 M-10 정박지의 정박안전성 연구)

  • KIM, Se-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.291-305
    • /
    • 2009
  • As you known well, Ulsan port is very famous for handling chemical products which occupies about 80% of quantities of all Korean ports. Many ship's operators prefer to handle liquid cargo es at proper anchorages instead of the berth for saving port expenses. Ulsan M-10 anchorage was assigned for handling liquid cargoes, however this anchorage's space is restricted by the oil pipeline which lays under seabed about 400m off from the center of M-10 anchorage, for which we have to consider of the external force and counter force for keeping the safety of anchoring. Where, external force is induced by wind, tidal currents and wave while counter force is induced by holding power of anchor/chain. In this study, author evaluated a method to analyze theoretically the limit of external force condition up to which an anchoring ship can keep her position without dragging, and for which applied to many kinds of combined Ships as mother ship of 50,000 DWT Tanker and 4 sizes of Tanker as alongsided ship.

Effectiveness of Anchoring with Balloon Guide Catheter and Stent Retriever in Difficult Mechanical Thrombectomy for Large Vessel Occlusion

  • Yi, Ho Jun;Kim, Bum-Tae;Shin, Dong-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.4
    • /
    • pp.514-522
    • /
    • 2022
  • Objective : A distal navigation of a large bore aspiration catheter during mechanical thrombectomy (MT) is important. However, delivering a large bore aspiration catheter is difficult to a tortuous or atherosclerotic artery. We report the experience of anchoring with balloon guide catheter (BGC) and stent retriever to facilitate the passage of an aspiration catheter in MT. Methods : When navigating an aspiration catheter failed with a conventional co-axial microcatheter delivery, an anchoring technique was used. Two types of anchoring technique were applied to facilitate distal navigation of a large bore aspiration catheter during MT. First, a passage of aspiration catheter was attempted with a proximal BGC anchoring technique. If this technique also failed, another anchoring technique with distal stent retriever was tried. Consecutive patients who underwent MT with an anchoring technique were identified. Details of procedure, radiologic outcomes, and safety variables were evaluated. Results : A total of 67 patients underwent MT with an anchoring technique. Initial trial of aspiration catheter passage with proximal BGC anchoring technique was successful for 35 patients (52.2%) and the second trial with distal stent retriever anchoring was successful for 32 patients (47.8%). Overall, navigation of a large bore aspiration catheter was successful for all patients (100%) without any procedure related complications. Conclusion : Our study showed the usefulness of anchoring technique with proximal BGC and distal stent retriever during MT, especially in those with an unfavorable anatomical structure. This technique could be an alternative option for delivering an of aspiration catheter to a distal location.

A Study on the Development of Anchoring Manual for T.S. HANBADA (실습선 한바다호의 묘박 지침 개발에 관한 연구)

  • Jung, Chang-Hyun;Kong, Gil-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Typhoons are usually influencing at least 3 or 4 times per year in Korean peninsula and they accompanied with strong winds and heavy rains and then brought tremendous loss of properties and lives. Especially typhoon "MAEMI" resulted in a lot of marine accidents of vessels such as sinking, stranding, collision etc. at anchoring or on berthing in pier. If the typhoon comes up to expected area influencing the incidents, the vessel tries to escape from the route of typhoon or anchor in sheltering anchorage. However, consideration of the anchoring or judgement of ship's safety against strong winds is decided only by the experience of operators without detail evaluation of the safety. Therefore, this paper evaluated the safety of T.S. HANBADA by comparing the external forces with the holding powers. Furthermore, based on this evaluation, the anchoring manual was produced for the maximum endurable wind velocity, the general precautions and the actions taken on the ship with steps.

  • PDF

A Study on the Anchoring Safety Assessment of E-Group Anchorage in Ulsan Port (울산항 E 집단정박지 묘박안전성 평가에 관한 연구)

  • Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2014
  • This study suggests the minimum critical external forces based on the assessment of anchoring safety to single anchor situation for representative 8 number of ships in E-group anchorage of Ulsan port. Assessment of anchoring safety is compared holding powers of anchor with external forces of wind, wave and current. Holding powers was reflected materials of seabed, equipment numbers regarding anchor and chain weight, also external forces acting on a hull was calculated considering projected wind area and wetted surface area to the full and ballast conditions respectively. The results of anchoring safety assessments to single anchor showed that the minimum criteria of dragging anchor is a little different from ship's type, size and loading conditions. Bulk carrier can be dragged over the 15m/s of winds and Tanker can be dragged over the 13m/s of winds in case of less than 2knots of currents speed.

Study on the Improvement of the Ship Capacity Standard of Korean Harbour Facilities based on the Gross Tonnage - Focused on Anchorage among Water Facilities - (총톤수 중심으로 지정된 국내 항만시설의 선박수용능력 산정기준 개선방안에 관한 고찰 - 수역시설 중 정박지를 중심으로 -)

  • Lee, Hong-Hoon;Lee, Chang-Hyun;Kwon, Yu-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.72-82
    • /
    • 2022
  • The anchorage among harbour facilities should ensure sufficient water surface area for safe anchoring. A general method is to consider the L.O.A of the target ship and the depth and bottom quality of anchorage to calculate the water surface area of anchorage. However, the gross tonnage is used as a unit of the ship capacity standard of anchorage based on the detailed rules for harbour facilities operation in Korea. In this study, the gross tonnage is converted to L.O.A to calculate the actual anchoring radius of the target ship. This actual anchoring radius exceeds at 25 anchorages (among 90 anchorages) compared with the designated water surface area. Therefore, as an improvement plan of the ship capacity standard for anchorage, L.O.A should be used as a unit for anchorage based on the detailed rules for harbour facilities operation and related Korean maritime laws.

A Study on the Selection of Target Ship for the Protection of Submarine Power Cable (해저 동력케이블 보호를 위한 대상 선박 선정에 관한 연구)

  • Lee, Yun-sok;Kim, Seungyeon;Yu, Yungung;Yun, Gwi-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.662-669
    • /
    • 2018
  • Recently, the installation of submarine power cables is under consideration due to the increase of electric power usage and the development of the offshore wind farm in island areas, including Jeju. In order to protect power cables installed on the seabed, it is necessary to calculate the burial depth based on the characteristics of anchoring, dragging and fishing, etc. However, there is no design standard related to the size of target ships to protect the cables in Korea. In this study, we analyzed the design standards for the protection of domestic submarine pipelines similar to submarine cables, and developed the risk matrix based on the classification by emergency anchoring considering the installation environment, then designed the size of target ships according to the cumulative function scale by ship size sailing through the sea concerned. Also, we linked marine accident conditions, such as anchoring, dragging, etc. and the environmental conditions such as current, sea-area depth of installation etc. to the criteria of the protection of submarine cable, and examined the size of specific target ships by dividing the operating environment of ships into harbor, coastal and short sea. To confirm the adequacy and availability of the size of target ships, we verified this result by applying to No. 3 submarine power cables, which is to be installed in the section from Wando to Jeju Island. This result is expected to influence in the development of a protection system for submarine cables and pipelines as well as the selection of anchor weight according to the determination of burial depth.

A Study on the Avoidance of Typhoon 'Maemi' - Mainly on the training ship KAYA - (태풍 매미의 피항에 관한 연구 -가야호를 중심으로 -)

  • Kim, Min-Seok;Kang, Il-Kwon;Kim, Hyeong-Seok;Jeong, Sun-Beom
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.225-231
    • /
    • 2004
  • The power and scale of 950 hPa typhoon "Maemi" which struck the shore of Gosung in Kyungnam Province was same as that of 951 hPa typhoon "Saraho" in 1959. For the purpose of getting the safety of training ship "KAYA", we anchored at Jinhae Bay with riding at two anchors paid out 8 shackles of cable respectively. By the way when wind force being over 30m/s, we could not keep the safety of the ship "KAYA" by means of the holding power of an anchor only. Just by using the main engine moderately, we were able to maintain the security of the ship. The holding the main engine moderately, we were able to maintain the security of the ship. The holding power of an anchor according to the way of anchoring, the quality of sea bottom, the direction and speed of wind and current, and the length of an anchor cable were analyzed. The obtained results are summarized as follows : 1. When riding at two anchors rather than lying at single anchor we could get a good holding power. 2. There was a big difference in holding power according to the quality of the bottom. 3. It would be best anchoring in a soft mud area than in any other place as possible. 4. It would also be desirable to set anchor shackles much more than equipment number prescribed in regulation in order to get safety of a ship providing against typhoon.