• Title/Summary/Keyword: Safety of Steel Bridges

Search Result 164, Processing Time 0.031 seconds

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

A study on behavior of steel joints that combine high-strength bolts and fillet welds

  • Chang, Heui-Yung;Yeh, Ching-Yu
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.361-372
    • /
    • 2019
  • In recent years, considerable attention has been paid to the research and development of high-strength steel plates, with particular emphasis on the enhancement of the seismic resistance of buildings and bridges. Many efforts have also been undertaken to improve the properties of high-strength bolts and weld materials. However, there are still different opinions on steel joints that combine high-strength bolts and fillet welds. Therefore, it is necessary to verify the design specifications and guidelines, especially for newly developed 1,400-MPa high-strength bolts, 570-MPa steel plates, and weld materials. This paper presents the results of literature reviews and experimental investigations. Test parameters include bolt strengths, weld orientations, and their combinations. The results show that advances in steel materials have increased the plastic deformation capacities of steel welds. That allows combination joints to gain their maximum strength before the welds have fracture failures. When in combination with longitudinal welds, high-strength bolts slip, come in contact with cover plates, and develop greater bearing strength before the joints reach their maximum strength. However, in the case of combinations with transverse welds, changes in crack angles cause the welds to provide additional strength. The combination joints can therefore develop strength greater than estimated by adding the strength of bolted joints in proportion to those of welded joints. Consequently, using the slip resistance as the available strength of high-strength bolts is recommended. That ensures a margin of safety in the strength design of combination joints.

LRFD Design and Reliability Level Estimation of a Steel Closed-Box Girder Bridge (폐단면 강박스거더교의 LRFD 설계와 신뢰성수준 평가)

  • Huh, Jung-Won;Yun, Dong-Geon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.217-225
    • /
    • 2010
  • Most of the steel bridges in Korea are being currently designed by the allowable stress design method that uses the conventional deterministic factors of safety. However the limit state design based on the concept of probability, statistics and reliability engineering is becoming very popular as a global standard deign method, leading the rational and economic bridge design. As part of the fundamental research to establish the load and resistance factor design(LRFD) of steel bridges considering domestic environmental conditions and regional characteristics, an experimental design is conducted by applying AASHTO-LRFD specification especially to a steel closed-box girder, which occupies relatively a large portion of steel bridges in Korea. Throughout the experimental design according to various sectional changes, some of the issues to be considered in the LRFD design of a composite steel closed-box girder bridge are examined. In this process, an Excel-based design verification program is developed for easy computation and prevention of errors. Quantitative reliability levels of the bridge sections designed by LRFD are also estimated using a reliability analysis method, and compared with the target reliability indexes applied in the LRFD design to verify the validity of the procedure and methodology used in this study.

Behaviour and design of composite beams subjected to flexure and axial load

  • Kirkland, Brendan;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.615-633
    • /
    • 2015
  • Composite steel-concrete beams are used frequently in situations where axial forces are introduced. Some examples include the use in cable-stayed bridges or inclined members in stadia and bridge approach spans. In these situations, the beam may be subjected to any combination of flexure and axial load. However, modern steel and composite construction codes currently do not address the effects of these combined actions. This study presents an analysis of composite beams subjected to combined loadings. An analytical model is developed based on a cross-sectional analysis method using a strategy of successive iterations. Results derived from the model show an excellent agreement with existing experimental results. A parametric study is conducted to investigate the effect of axial load on the flexural strength of composite beams. The parametric study is then extended to a number of section sizes and employs various degrees of shear connection. Design models are proposed for estimating the flexural strength of an axially loaded member with full and partial shear connection.

Influence of Load on Welding Stress Distribution of Structural Steel (구조용 강재의 용접응력 분포에 미치는 작용력의 영향)

  • Lee, Sang Hyong;Chang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.555-564
    • /
    • 2004
  • Steel materials, which are normally used in bridge structures, are prone to corrosion and have thin plate structures. Steel bridges that have been damaged through increased vehicle load and corrosion are frequently expected to be strengthened. Repair or strengthening methods generally include cutting, bolting, and welding. The basic characteristics of stress and deformation behavior generated by cutting and welding in the course of the repair work, however, are not yet understood. It is difficult to say whether the safety of the structure after welding conforms with existing safety evaluation methods.Therefore, to gain confidence in the material and to guarantee the safety of the structure after welding, the stress generated by heat, through welding and cutting, was generalized. The effect of additional loads with respect to stress generated by heat was also investigated.

Quantitative Deterioration and Maintenance Profiles of Typical Steel Bridges based on Response Surface Method (응답면 기법을 이용한 강교의 열화 및 보수보강 정량화 이력 모델)

  • Park, Seung-Hyun;Park, Kyung Hoon;Kim, Hee Joong;Kong, Jung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.765-778
    • /
    • 2008
  • Performance Profiles are essential to predict the performance variation over time for the bridge management system (BMS) based on risk management. In general, condition profiles based on experts opinion and/or visual inspection records have been used widely because obtaining profiles based on real performance is not easy. However, those condition profiles usually don't give a good consistency to the safety of bridges, causing practical problems for the effective bridge management. The accuracy of performance evaluation is directly related to the accuracy of BMS. The reliability of the evaluation is important to produce the optimal solution for distributing maintenance budget reasonably. However, conventional methods of bridge assessment are not suitable for a more sophisticated decision making procedure. In this study, a method to compute quantitative performance profiles has been proposed to overcome the limitations of those conventional models. In Bridge Management Systems, the main role of performance profiles is to compute and predict the performance of bridges subject to lifetime activities with uncertainty. Therefore, the computation time for obtaining an optimal maintenance scenario is closely related to the efficiency of the performance profile. In this study, the Response Surface Method (RSM) based on independent and important design variables is developed for the rapid computation. Steel box bridges have been investigated because the number of independent design variables can be reduced significantly due to the high dependency between design variables.

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

Safety Evaluation and Maintenance Methods for Steel Bridges (鋼橋梁의 安全診斷과 維持補修方法)

  • 윤정방
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.36-40
    • /
    • 1994
  • 여기서는 강교량을 중심으로 기설 교량구조물의 안전도 진단방법에 대하여 토의하였다. 산업 활동의 기간이 되는 교량구조물의 안전성확보는 매우 중요한 일이며, 이를 위하여는 구조공학, 기계공학, 전자.계측공학 등 다방면의 첨단기술이 협조적으로 연구, 개발되고 운영되는 것이 요망된다. 아울러, 이러한 대형구조물들의 안전진단 및 보수, 유지방책을 이들의 계획, 설계 및 건설단계에서 부터 고려되는 필요한 합리적인 대책이 강구되어야 한다고 사료된다.

  • PDF

The study on corrosion of the inner area of closed box-girder for unpainted weathering steel bridges (무도장 내후성 강 교량의 밀폐형 박스거더 내부의 부식에 대한 고찰)

  • Ma, Seung-Hwan;Noh, Young-Tai;Jang, Gun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2391-2400
    • /
    • 2015
  • Weather proof steels are used for steel bridges due to its high corrosion resistance under atmospheric conditions. However, instead of forming stabilized rust layers, general rust occurs on weather proof steels under high humidity condition close to seawater or shady places. In Japan, therefore, they perform rust stabilization treatment instead of unpainted treatment due to severe atmospheric conditions. However, most of domestic weather proof steels were constructed unpainted in the form of closed box-girder, which makes the periodical repetition of dry and wet hard to occur. For the steel bridges constructed on the Han river, the evaporation of water, dew condensation due to temperature change, and stagnant water due to rain affect harmfully on the formation of passive film on weather proof steels. Thus, in this research, in order to analyze corrosion properties inside the closed box-girder for the unpainted weather proof steel bridge in the waterworks safety zone, multiple ways of analysis such as observation with eyes, cellophane-tape test, steel thickness measurement, surface corrosion potential measurement, electron microscope analysis, and X-ray diffraction analysis of the rust were performed. As a result, unstable rust layer was observed inside the closed box-girder, and severe corrosion was observed on the top and bottom of the flanges due to the effects of stagnant water caused by rain, dew condensation, and de-icing materials.

The Prediction of Failure Probability of Bridges using Monte Carlo Simulation and Lifetime Functions (몬테칼로법과 생애함수를 이용한 교량의 파괴확률예측)

  • Seung-Ie Yang
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.116-122
    • /
    • 2003
  • Monte Carlo method is one of the powerful engineering tools especially to solve the complex non-linear problems. The Monte Carlo method gives approximate solution to a variety of mathematical problems by performing statistical sampling experiments on a computer. One of the methods to predict the time dependent failure probability of one of the bridge components or the bridge system is a lifetime function. In this paper, FORTRAN program is developed to predict the failure probability of bridge components or bridge system by using both system reliability and lifetime function. Monte Carlo method is used to generate the parameters of the lifetime function. As a case study, the program is applied to the concrete-steel bridge to predict the failure probability.