• Title/Summary/Keyword: Safety measure time

Search Result 428, Processing Time 0.031 seconds

Review of Clinical Studies of Oral Herbal Medicine Treatment for Pediatric Chickenpox using CNKI Database - Focused on Chinese Randomized Controlled Trials after 2000s - (CNKI로 검색한 소아 수두의 한약 내복 치료에 대한 임상연구 동향 - 2000년대 이후 RCT 연구를 중심으로-)

  • Choi, Jung Yoon;Kim, Jang Hyun;Min, Sang Yeon
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.34 no.3
    • /
    • pp.18-36
    • /
    • 2020
  • Objectives The purpose of this study is to analyze Chinese randomized controlled trials (RCTs), and to evaluate the effectiveness and safety of the oral herbal medicine treatment for pediatric chickenpox. Methods We searched RCTs after 2000s from the China National Knowledge Infrastructure (CNKI). Afterwards, the year of publication, demographic information, duration of chickenpox, intervention, treatment duration, outcome measure, results and adverse events were investigated and analyzed for this study. Results 21 RCTs out of 219 studies were collected and analyzed. Although each composition of the herbal medicine was different, they have common ingredients such as 清熱解毒, 散結消腫, 疏散風熱, 涼血解毒, 解表散風 in order to make efficacy of 清熱解毒, 散結消腫, 疏散風熱, 涼血解毒, 解表散風. The oral herbal medicine showed better efficacy and safety to improve clinical symptoms such as total efficacy, cure rate, antipyretic time, antipruritic time, scab time, anti-rash time, hospitalization period and herpes recovery time compared to the western medicine treatment. Conclusions These results show that the oral herbal medicine treatment on chickenpox in children may be more effective in reducing of clinical symptoms compared to the western medicine treatment.

Repeat Auditing of Primary Health-care Facilities Against Standards for Occupational Health and Infection Control: A Study of Compliance and Reliability

  • Cloete, Brynt;Yassi, Annalee;Ehrlich, Rodney
    • Safety and Health at Work
    • /
    • v.11 no.1
    • /
    • pp.10-18
    • /
    • 2020
  • Background: The elevated risk of occupational infection such as tuberculosis among health workers in many countries raises the question of whether the quality of occupational health and safety (OHS) and infection prevention and control (IPC) can be improved by auditing. The objectives of this study were to measure (1) audited compliance of primary health-care facilities in South Africa with national standards for OHS and IPC, (2) change in compliance at reaudit three years after baseline, and (3) the inter-rater reliability of the audit. Methods: The study analyzed audits of 60 primary health-care facilities in the Western Cape Province of South Africa. Baseline external audits in the time period 2011-2012 were compared with follow-up internal audits in 2014-2015. Audits at 25 facilities that had both internal and external audits conducted in 2014/2015 were used to measure reliability. Results: At baseline, 25% of 60 facilities were "noncompliant" (audit score<50%), 48% "conditionally compliant" (score >50 < 80%), and only 27% "compliant" (score >80%). Overall, there was no significant improvement in compliance three years after baseline. Percentage agreement on specific items between internal and external audits ranged from 28% to 92% and kappa from -0.8 to 0.41 (poor to moderate). Conclusion: Low baseline compliance with OHS-IPC measures and lack of improvement over three years reflect the difficulties of quality improvement in these domains. Low inter-rater reliability of the audit instrument undermines the audit process. Evidence-based investment of effort is required if repeat auditing is to contribute to occupational risk reduction for health workers.

Development of an Integrated Quarantine System Using Thermographic Cameras (열화상 카메라를 이용한 통합 방역 시스템 개발)

  • Jung, Bum-Jin;Lee, Jung-Im;Seo, Gwang-Deok;Jeong, Kyung-Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • The most common symptoms of COVID-19 are high fever, cough, headache, and fever. These symptoms may vary from person to person, but checking for "fever" is the government's most basic measure. To confirm this, many facilities use thermographic cameras. Since the previously developed thermographic camera measures body temperature one by one, it takes a lot of time to measure body temperature in places where many people enter and exit, such as multi-use facilities. In order to prevent malfunctions and errors and to prevent sensitive personal information collection, this research team attempted to develop a facial recognition thermographic camera. The purpose of this study is to compensate for the shortcomings of existing thermographic cameras with disaster safety IoT integrated solution products and to provide quarantine systems using advanced facial recognition technologies. In addition, the captured image information should be protected as personal sensitive information, and a recent leak to China occurred. In order to prevent another case of personal information leakage, it is urgent to develop a thermographic camera that reflects this part. The thermal imaging camera system based on facial recognition technology developed in this study received two patents and one application as of January 2022. In the COVID-19 infectious disease disaster, 'quarantine' is an essential element that must be done at the preventive stage. Therefore, we hope that this development will be useful in the quarantine management field.

An Analysis of EEG Watching Fear of Crime Video (범죄에 대한 두려움 영상 시청 중 발생하는 뇌파 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.9
    • /
    • pp.361-366
    • /
    • 2018
  • Previous studies on fear of crime used survey and interview to measure fear of crime. However, though these methods can measure fear of crime in past events, they cannot measure real time fear of crime. In this paper, we use EEG to measure fear of crime in real time. We measure and analyze the EEG of subjects watching the video and confirm the difference between three groups classified according to the degree of fear of crime. As a result, about two times more beta waves are shown when a group of subjects with a high degree of fear of crime watches the images of fear of crime and 1.5 times more beta waves are shown among the other groups. Although watching videos related to the crime increased the beta waves, the police video showed little increase in beta waves because the subjects can sense safety in the video even if it is related to crime.

Treatment of Ballast Water By Filtration -Ultraviolet radiation-Electrolytic Process (FUE 공정에 의한 Ballast Water처리)

  • 박상호;김억조;박성진;김인수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.2
    • /
    • pp.23-27
    • /
    • 2002
  • Reballasting at sea, as recommended by the IMO guidelines, currently provides the best-available measure to reduce the risk of transfer of harmful aquatic organisms, but is subject to serious ship-safety limits. It is therefore extremely important that alternative, effective ballast water management and treatment methods are developed as soon as possible, to replace reballasting at sea. Filtration-Ultraviolet radiation-Electrolytic process (FUE) was evaluated for disinfection of seawater used In ballast water Optimal current density and UV light intensity were 2.0A/dm$^2$ and, 220㎼/$\textrm{cm}^2$/m with which 100% reduction time was 2sec in a Ultraviolet radiation-Electrolytic process. This study showed that FUE process was effective for the disinfection of commonly isolated bacteria and bacillus from ballast water.

  • PDF

A Study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting (실시간 기상 정보를 이용한 최적 항로 안전 평가 시스템의 연구)

  • Choi, Kyong-Soon;Park, Myung-Kyu;Lee, Jin-Ho;Park, Gun-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.133-140
    • /
    • 2007
  • Since early times, captain have been sailing to select the optimum route considering the weather, ship loading status condition and operational scheduling empirically. However, it is rare to find digitalized onboard route support system whereas weather facsimile or wave and swell chart are utilized for the officer, based on captain's experience. In this paper, optimal route safety assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimizea ETA(estimated time of arrival) and fuel consumption that shipping company and captain are requiring to evaluate for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method. Finally, It is assistance measure for ship's optimum navigation route safety planning & assessment.

  • PDF

Pipe thinning model development for direct current potential drop data with machine learning approach

  • Ryu, Kyungha;Lee, Taehyun;Baek, Dong-cheon;Park, Jong-won
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.784-790
    • /
    • 2020
  • The accelerated corrosion by Flow Accelerated Corrosion (FAC) has caused unexpected rupture of piping, hindering the safety of nuclear power plants (NPPs) and sometimes causing personal injury. For the safety, it may be necessary to select some pipes in terms of condition monitoring and to measure the change in thickness of pipes in real time. Direct current potential drop (DCPD) method has advantages in on-line monitoring of pipe wall thinning. However, it has a disadvantage in that it is difficult to quantify thinning due to various thinning shapes and thus there is a limitation in application. The machine learning approach has advantages in that it can be easily applied because the machine can learn the signals of various thinning shapes and can identify the thinning using these. In this paper, finite element analysis (FEA) was performed by applying direct current to a carbon steel pipe and measuring the potential drop. The fundamental machine learning was carried out and the piping thinning model was developed. In this process, the features of DCPD to thinning were proposed.

Design and Fabrication of High Frequency Ground Impedance Measuring System for Assessment of Grounding System for Lightning Protection (낙뢰 보호용 접지시스템 평가를 위한 고주파 접지임피던스 측정시스템의 설계 및 제작)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min;Kim, Young-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the design and fabrication of high frequency ground impedance measuring system for assessment of grounding system for Lightning protection. The ground impedance measuring system has been designed and fabricated which makes it possible to assess the ground impedance by frequency ranges from 100 Hz to 1 MHz. The effective grounding systems having a very low impedance to electromagnetic disturbance such as lightning surges and noises in microelectronics and high-technology branches are strongly required. In order to analyze the dynamic characteristic of grounding system impedances in lightning and surge protection grounding systems, it is highly desirable to assess the ground impedances as a measure of performance of grounding system in which lightning and switching surge currents with fast rise time and high frequency flow. The measuring system is based on the variable frequency power supply and consists of signal circuit part, main control part, data acquisition and processing unit, and voltage and current probe system. The ground impedance measuring system can be used to assess grounding system during occurrence of lightning.

Quasi real-time post-earthquake damage assessment of lifeline systems based on available intensity measure maps

  • Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.873-889
    • /
    • 2015
  • In civil engineering, probabilistic seismic risk assessment is used to predict the economic damage to a lifeline system of possible future earthquakes. The results are used to plan mitigation measures and to strengthen the structures where necessary. Instead, after an earthquake public authorities need mathematical models that compute: the damage caused by the earthquake to the individual vulnerable components and links, and the global behavior of the lifeline system. In this study, a framework that was developed and used for prediction purpose is modified to assess the consequences of an earthquake in quasi real-time after such earthquake happened. This is possible because nowadays entire seismic regions are instrumented with tight networks of strong motion stations, which provide and broadcast accurate intensity measure maps of the event to the public within minutes. The framework uses the broadcasted map and calculates the damage to the lifeline system and its component in quasi real-time. The results give the authorities the most likely status of the system. This helps emergency personnel to deal with the damage and to prioritize visual inspections and repairs. A highway transportation network is used as a test bed but any lifeline system can be analyzed.

A Study on the Diffusion Behavior of Leak Gas from Underground Gas Pipeline (지하매설 가스배관의 가스 누출시 지하 확산거동에 관한 연구)

  • Choi S.C.;Jo Y.D.;Kim K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.43-52
    • /
    • 1999
  • An experimental chamber was fabricated to observe the gas diffusion behavior of leak gas from underground city-gas pipeline. It was made of acryl so that feeding of gas and the measuring points of the gas could be varied in each experiment. The MOS sensors were used to measure the concentrations of leak gas. The soil media such as the Jumunjin standard sand and the granite weathered soil were used to measure the gas diffusion and the change of leak gas concentrations was measured with time for various gas flow rate. As the distance between the leak point of gas and the measuring point of MOS sensor decreases, or the leak rate increases, the detection time of gas at a measuring points decreases and the gas concentration increases quickly and the concentration of the gas at steady state also increases. As the density of granite weathered soil is higher than that of Jumunjin standard sand for compaction, the detection time of leak gas in the granite weathered soil was longer than that in the Jumunjin standard soil. The leak gas concentrations in the granite weathered soil were lower than those in the Jumunjin standard sand at the beginning of gas leaking from a pipe, but inverse phenomenon was occured at steady state.

  • PDF