• 제목/요약/키워드: Safety element

검색결과 2,343건 처리시간 0.029초

정신의료기관 보호실 대상 해외 가이드라인 비교분석 연구 (Comparative Analysis of Overseas Guidelines for Seclusion Room of Psychiatric Facilities)

  • 이승지;윤선영;여소연;박도희;백진희;김성현
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제29권2호
    • /
    • pp.7-16
    • /
    • 2023
  • Purpose: Seclusion room in a psychiatric facility limit the body and space for treatment or protection, so controversy over human rights violations arises despite their necessity. The seclusion room should be created as an environment that can promote the recovery and healing of patients, not the purpose of managing patients. while ensuring the safety of medical staff. Therefore, the purpose of this study is to compare and analyze the standards of overseas guidelines for the seclusion room in psychiatric facility, and through this, it is intended to contribute to the improvement of facility standards for seclusion rooms in Korea, which are at a very insufficient level. Method: This study takes the method of comparative analysis through literature review. We analyze the facility standards of seclusion room in Korea, and compare and analyze guidelines for seclusion rooms in Australia, US, UK, and Canada. Result: As a result, the elements of the guideline for seclusion room were classified into size, space, opening, furniture and equipment, and etc. The results of comparative analysis of details are presented. Implications: Korea should also prepare guidelines for psychiatric institutions, and among them, the standards for seclusion room, which are at the center of controversy over human rights violations, should be reviewed in depth.

하니컴 샌드위치 복합재를 적용한 저상버스의 충돌 및 전복 특성 연구 (A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites)

  • 신광복;고희영;조세현
    • Composites Research
    • /
    • 제21권1호
    • /
    • pp.22-29
    • /
    • 2008
  • 본 논문은 유리섬유 에폭시 면재에 알루미늄 하니컴 샌드위치 복합재가 적용된 저상버스 차체에 대한 정면충돌과 전복에 대한 특성에 대해 연구하였다. 이때 충돌과 전복 해석은 외연유한요소 해석 프로그램인 LS-DYNA3D를 이용하였다. 차체 구조물에 적용되는 적층 복합재 면재에 대해 기계적 특성시험을 통하여 물성을 획득하였고, 직교이방성 특성을 갖는 하니컴 심재의 물성은 유효등가손상 모델을 적용하였다. 저상버스의 충돌 해석은 60km/h의 속도로 정면충돌 사고를 모사하여 해석을 수행하였고, 전복해석은 유럽 안전법규 ECE-R66의 시험 방법을 고려하여 해석하였다. 저상버스의 정면충돌과 전복에 대해 운전자와 승객의 생존 공간 안전성에 관한 결과를 보여준다. 또한, 수정된 Chang-Chang 파손기준식은 충돌과 전복해석에 대한 복합재 구조물의 파손 모드 예측에 추천된다.

Sealing design optimization of nuclear pressure relief valves based on the polynomial chaos expansion surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Tianhang Xue;Xueguan Song;Xiaofeng Li;Dianjing Chen
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1382-1399
    • /
    • 2023
  • Pressure relief valve (PRV) is one of the important control valves used in nuclear power plants, and its sealing performance is crucial to ensure the safety and function of the entire pressure system. For the sealing performance improving purpose, an explicit function that accounts for all design parameters and can accurately describe the relationship between the multi-design parameters and the seal performance is essential, which is also the challenge of the valve seal design and/or optimization work. On this basis, a surrogate model-based design optimization is carried out in this paper. To obtain the basic data required by the surrogate model, both the Finite Element Model (FEM) and the Computational Fluid Dynamics (CFD) based numerical models were successively established, and thereby both the contact stresses of valve static sealing and dynamic impact (between valve disk and nozzle) could be predicted. With these basic data, the polynomial chaos expansion (PCE) surrogate model which can not only be used for inputs-outputs relationship construction, but also produce the sensitivity of different design parameters were developed. Based on the PCE surrogate model, a new design scheme was obtained after optimization, in which the valve sealing stress is increased by 24.42% while keeping the maximum impact stress lower than 90% of the material allowable stress. The result confirms the ability and feasibility of the method proposed in this paper, and should also be suitable for performance design optimizations of control valves with similar structures.

Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach

  • Jinkun Sun;Rita Yi Man Li;Lindong Li;Chenxi Deng;Shuangshi Ma;Liyun Zeng
    • Advances in concrete construction
    • /
    • 제15권5호
    • /
    • pp.333-348
    • /
    • 2023
  • Fast infrastructure development boosts the demand for shotcrete. Despite sand and stone being the most common coarse and fine aggregates for shotcrete, excessive exploration of these materials challenges the ecological environment. This study utilized an industrial solid waste, high-titanium heavy slag, blended with steel fibers to form Wet Shotcrete of Steel Fiber-reinforced High-Titanium Heavy Slag (WSSFHTHS). It investigated its workability, shotcrete performance and mechanical properties under different water-to-cement ratios, fly ash content, superplasticizer dosage, and steel fiber content. The tunnel excavation and support were investigated by conducting finite element numerical simulation analysis and was used in 3 tunnel lining pipes in Zhonggouwan tailing pond. The major findings are as follows: (1) The water-to-cement ratio (w/c ratio) significantly impacted the compressive strength of WSSFHTHS. The highest 28-day compressive strength of 60 MPa was achieved when the w/c ratio was 0.38; (2) Adding fly ash improved the workability and shotcrete performance and strength development of WSSFHTHS. The best anti-permeability performance was achieved when the fly ash constituted 15%, with the lowest permeability coefficient of 4.596 × 10-11 cm/s; (3) The optimum superplasticizer dosage for WSSFHTHS is 0.8%. It provided the best workability and shotcrete performance. Excessive dosage resulted in water bleeding and poor aggregate encapsulation, while insufficient dosage decreased flowability and adversely affected shotcrete performance; (4) The dosage of steel fibers significantly impacted the flexural and tensile strength of WSSFHTHS. When the steel fiber dosage was 45 kg/m3, the 28-day flexural and tensile strengths were 8.95 MPa and 6.15 MPa, respectively; (5) By integrating existing shotcrete techniques, the optimal lining thickness was 80 mm for WSSFHTHS per simulation. The results revealed that after using WSSFHTHS, the displacement of the tunnel surrounding the rock significantly improved, with no cracks or hollows, similar to the simulation results.

The difference in the slope supported system when excavating twin tunnels: Model test and numerical simulation

  • Liu, Xinrong;Suliman, Lojain;Zhou, Xiaohan;Zhang, Jilu;Xu, Bin;Xiong, Fei;Elmageed, Ahmed Abd
    • Geomechanics and Engineering
    • /
    • 제31권1호
    • /
    • pp.15-30
    • /
    • 2022
  • Slope stability during the excavation of twin road tunnels is considered crucial in terms of safety. In this research, physical model testing and numerical analysis were used to investigate the characteristics of the settlement (uz) and vertical stresses (σz) along the two tunnel sections. First, two model tests for a (fill-rock) slope were conducted to study the settlement and stresses in presence and absence of slope support (plate support system). The law and value of the result were then validated by using a numerical model (FEM) based on the physical model. In addition, a finite element model with a slope supported by piles (equivalent to the plate) was used for comparison purposes. In the physical model, several rows of plates have been added to demonstrate the capacity of these plates to sustain the slope by comparing excavating twin tunnels in supported and unsupported slope, the results show that this support was effective in the upper part of the slope, while in the middle and lower part the support was limited. Additionally, the plates appear to induce less settlement in several areas of the slope with differing settlement and stress distribution as compared to piles. Furthermore, as a results of the previous mentioned investigation, there are many factors influence the stress and settlement distribution, such as the slope's cover depth, movement during excavation, buried structures such as the tunnel lining, plates or piles, and the interaction between all of these components.

Bending 30-gauge needles using a needle guide: fatigue life evaluation

  • Jared Joseph Tuttle;Andrew Doran Davidson;Gregory Kent Tuttle
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제23권5호
    • /
    • pp.281-285
    • /
    • 2023
  • Background: Dentists bend needles prior to certain injections; however, there are concerns regarding needle fracture, lumen occlusion, and sharps handling. A previous study found that a 30-gauge needle fractures after four to nine 90° bends. This fatigue life study evaluated how many 90° bends a 30-gauge dental needle will sustain before fracture when bent using a needle guide. Methods: Two operators at Element Materials Technology, an independent testing, inspection, and certification company tested 48 30-gauge needles. After applying the needle guide, the operators bent the needle to a 90° angle and expressed the anesthetic from the tip. The needle was then bent back to a 0° angle, and the functionality was tested again. This process was repeated until the anesthetic failed to pass through the end of the needle due to fracture or obstruction. Each operator tested 24 needles (12 needles from each lot), and the number of sustained bends before the needle fracture was recorded. Results: The average number of sustained bends before needle failure was 40.33 (95% confidence interval = 37.41-43.26), with a minimum of 20, median of 40, and a maximum of 54. In each trial, the lumen remained patent until the needle fractured. The difference between the operators was statistically significant (P < 0.001). No significant differences in performance between needle lots were observed (P = 0.504). Conclusion: Our results suggest that using a needle guide increases the number of sustained bends before needle fracture (P < 0.000001) than those reported in previous studies. Future studies should further evaluate the use of needle guides with other needle types across a variety of operators. Furthermore, additional opportunities lie in exploring workplace safety considerations and clinical applications of anesthetic delivery using a bent needle.

A Study on the Systematic Cause Analysis of Shipboard Fire Accident Case using STAMP Methodology

  • JeongMin Kim;HyeRi Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.207-215
    • /
    • 2023
  • 선박 시스템은 복잡하고 고도화되어 있으며, 각 요소 간 업무연관성이 굉장히 높다 보니 관련된 사고를 예방하기 위해서는 사고를 분석할 때 사고의 직접적 원인을 찾아 제거하는 전통적인 순차적 접근방법에 더하여 전반적이고 통합적인 시스템의 측면에서 접근할 필요가 있다. 이에 본 연구에서는 전통적인 사고분석 기법과는 다른 STAMP 방법론을 사용하여 선박에서 발생한 화재사고를 분석한다. 이 분석을 통해 선박 내 화재를 예방하기 위한 안전 요구 사항, 부적절한 결정과 조치, 상황, 장비 결함 및 사고분석 결과에서 도출된 권고 사항을 포함한 다양한 요소를 검토한다. STAMP를 이용한 사고 예방에 대한 종합적인 접근을 통해 선박이라는 전체 시스템 내에서 구성 요소 수준에서 대안 평가를 제시하고, 단순한 사고분석 뿐만 아니라 사고 예방 및 위험 평가에도 체계적으로 활용하고자 한다.

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • 제32권3호
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

강섬유보강콘크리트의 압축거동 특성을 반영한 기둥의 내폭해석 (Numerical Study on Columns Subjected to Blast Load Considering Compressive Behavior of Steel Fiber Reinforced Concrete )

  • 김재민;이상훈;김재현;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권5호
    • /
    • pp.105-112
    • /
    • 2023
  • 강섬유보강콘크리트는 일반 콘크리트에 비해 높은 강도 및 우수한 에너지 소산 능력을 보이며, 폭발하중 작용 시 균열 전파 및 파편 발생을 감소시킬 수 있다. 본 연구에서는 유한요소해석 프로그램인 LS-DYNA에 SFRC 재료물성을 구현하고자 콘크리트 비선형 재료모델인 K&C 모델의 파괴 곡면(Failure surface) 및 손상 함수(Damage function)를 정의하는 파라미터를 제안하였다. 제안 파라미터 검증을 위하여 단일요소해석을 수행하였으며, 제안 파라미터가 적용된 재료모델은 SFRC 재료시험 거동을 상당히 유사하게 모사하는 것으로 나타났다. 또한, 강섬유 혼입률에 따른 SFRC 기둥의 성능을 평가하기 위하여 내폭해석을 수행하였으며, KOSHA 규정을 참조하여 섬유 혼입률에 따른 SFRC 기둥의 내폭성능을 정량적으로 분석하였다.

복합설비를 위한 EMC 엔지니어링 연구 (Study on the EMC Engineering for Fixed Installations)

  • 강영흥
    • 한국항행학회논문지
    • /
    • 제27권6호
    • /
    • pp.798-803
    • /
    • 2023
  • 스마트팩토리 (smart factory)를 비롯한 IIoT (industrial internet of things) 산업 분야에서는 최근 지능 정보화 기술의 발달로 전자기기들을 복합적으로 결합하여 설치하는 경우가 많다. 이와 같은 복합시설로부터 발생되는 전자파가 다른 기기 및 서비스에 영향을 주어 전자파 영향이 안전의 문제로 연결될 수 있으므로 복합시설 제어 시 발생하는 전자파간섭 (EMI; electromagnetic interference) 및 전자파적합성 (EMC; electromagnetic compatibility) 문제는 반드시 해결해야 할 필수 요소이며, 복합시설의 산업 육성을 위한 전자파 안전관리 기반이 마련되어야 한다. 이에 본 연구에서는 복합시설 등의 전자파 안전관리 대책 기반 조성을 위해 국가표준으로 개발된 전자파 안전관리 가이드라인에 의해 태양광 복합시설의 안전관리 실증을 수행하였다, 그 결과 태양광 전자파 안전관리를 통해 전자파 위험도를 관리 수준으로 낮추었으며, 국내 복합시설 전자파 안전관리 제도 마련을 위한 정책적 방안을 제시하였다.