• Title/Summary/Keyword: Safety distances

Search Result 190, Processing Time 0.025 seconds

Improvement of Damage Range Calculation for First Response to Chemical Accidents (화학사고의 일차 대응을 위한 피해영향범위 산정 개선 방안)

  • Lee, Deok Jae;Ahn, Jae-Hyun;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.59-65
    • /
    • 2017
  • Calculation of the damage impact of chemical accidents is an important element in site, and the initial isolation distance and the protective action distances are significant factors in coping the chemical accident. In this study, three major cities that represent each Province were selected, and the safety distances were calculated considering regional climate conditions. The results were compared with the prescribed values in Emergency Response Guidebook. It is concluded that the regional meteorological conditions such as temperature, vapour pressure, relative humidity, wind speed, and cloud cover should be reflected in estimating the initial isolation distance and the protective action distance.

A Study on the Collision-avoidance Action of the T.S. Kaya (실습선 가야호 충돌회피 동작에 관한 연구)

  • KIM, Min-Seok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.1
    • /
    • pp.52-58
    • /
    • 2009
  • With the increase of marine traffic capacity, marine accidents have also been increased for recent several years. Especially watch officer must maneuver not entering into the safety minimum approaching distances when two power-driven vessels are crossing. The author calculated the safety minimum approaching distances to provide a navigator with them based on zig-zag motion by experimental ship. The obtained results are summarized as follows : 1. The greatest distance is to be kept by the give way vessel to avoid collision when the crossing course angle is $90^{\circ}$. In this case the safety minimum approaching distance must be more than from 5 times to 11 times of her own length according to her size. 2. The watch officer of the give way vessel must always take an action to avoid collisions outside of the safety minimum approaching distance. 3. When the navigator used rudder to small angle than to large angle to avoid other vessel he must take action outside the sufficient safety minimum outside distances in advance. 4. Risk of collision in crossing situation is more greater in obtuse situation than in acute one.

The Quantitative Analysis on the Criterion Elements for Collision Avoidance Action in Collision Avoidance maneuver and Its Application (피항조선시의 피항개시기준요소의 양적파악 및 그 이용에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.25-34
    • /
    • 1999
  • The Steering and Sailing Rules of International Regulation for Preventing Collisions at Sea now in use direct actions to avoid collision when two power-driven vessels are meeting on reciprocal or nearly reciprocal courses so as to involve risk of collision. But these rules do not refer to the minimum relative distances and safety relative distances between two vessels when they should take such actions.In this paper the ship's collision avoiding actions being analyzed from a viewpoint of ship motions, the mathematical formulas to calculate such relative distances necessary for taking actions to avoid collision were worked out. The values of maneuvering indices being figured out through experiments of 20 actual ships of small, medium, large and mammoth size and applied to calculating formulas, the minimum relative distances and safety relative distances were calculated. The main results were as follows. 1. It was confirmed that the criterion elements for collision avoiding actions in head-on situation of two vessels shall be the minimum relative distances and safety relative distances between them. 2. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the minimum relative distance of small vessel(GT : 160~650tons) was found to be about 4.7 times her own length, and those of medium (GT:2,300~4,500tons),large(GT:15,000~62,000tons) and mommoth (GT:91,000~194,000tons) vessels were found to be about 5.2 times, about 5.2 times and about 6.1 times their own lengths respectively. 3. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the safe relative distance of small vessel (GT : 160~650tons) was found to be about 6.8 times her own length, and those of medium (GT : 2,300~4,500tons), large (GT: 15,000~62,000tons) and mammoth (GT : 91,000~194,000tons) vessels were found to be about 9.0 times, about 6.3 times, and about 8.0 times their own lengths respectively. 4. It is considered to be helpful for the safety of ship handling that the sufficient safe relative distances for every vessels shall be more than about 12~14 times which are 2 times minimum relative distance, their own length on above assumption.

  • PDF

New Normal and Business Sustainability in the Age of Global pandemic

  • Kalam, Abul;Hossain, Md. Alamgir;Jahan, Nusrat;Kim, Minho
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.1
    • /
    • pp.71-86
    • /
    • 2021
  • Purpose - This study examines the awareness regarding the symptoms of COVID-19 exposures and safety distances strategies whether they were useful to resile the businesses a mid of the pandemic. Besides exploring the awareness and safety distances, the effectiveness of offering free use of protective equipment (mask, hand sanitizer, frequent hand washing, etc.) to the customers for visiting the business centers was also examined. Design/methodology/approach - This study collected 264 survey data in Bangladesh which is one of the most densely populated country and very vulnerable for COVID-19 due to its socio-economic condition. The multiple regression analysis is used to analyze the data. Findings - The findings of the study indicate that the awareness about the symptoms of virus exposures (cough, fever, diarrhea, and weakness) has significant affirmative effects to enhance the public movement for business purposes with the lower possibility to be affected by the virus. The study also indicates that safety distances and protective equipment can mediate the significant positive relationship between the awareness of the disease and the businesses' resilient capacity. Research implications or Originality - COVID-19, as an apprehensive health issue in the current world, has sharpened the uncertainty of the businesses. One essential technique as lockdown, has been followed by almost every country to protect the transmission of the virus even though the scholars criticized it due to the substantial adverse effects on the country's economy. Under this circumstances, this study provides implications to the relevant businesses by assessing the nexus between the safety distances and the proper uses of protective equipment with the business resilient.

The Method to Calculate the New Course Distance of a Ship by Turning Circle Test Method (선회권시험방법에 의한 신침로거리의 산정방법에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.299-311
    • /
    • 1994
  • The new course distances of a ship are one of the important factors of the safety handling as the indices to indicate directly her abilities of course alteration. Recently, International Maritime Organization (IMO) exhorts that all vessels should use maneuvering booklets in which are drawn the curves of new course distances obtained from the test of measuring them and noted other maneuvering performance standard in various navigation conditions. This paper describes the method to calculate many new course distances for many rudder angles by turning circle test without observation or using other calculating methods. The main results are as follows: 1) The mean difference of the distances between two new course distances by the turning circle test and heading test of the experimental ship was about 7.7% vaules of the ones by the heading test. when her altering angles were $48^{\circ}$, $63^{\circ}$and $70^{\circ}$, using the rudder angle of $35^{\circ}$ . These new course distances were therefore found to be small in difference of those. 2) The mean difference of the distance between two new course distances by the turning circle test and the maneuvering indices of the experimental ship was about 4.5% values of the ones by the maneuvering indices, when her altering angles were $48^{\circ}$, $63^{\circ}$and $70^{\circ}$, using the rudder angle of $35^{\circ}$, these new course distances were therefore found to be small in difference of those. 3) The mean difference of the distance between two new course distances by the turning circle test and the observation of the experimental ship was about 6.1% values of the ones by the observation, when her altering angles were $48^{\circ}$, $63^{\circ}$and $70^{\circ}$, using the rudder angle of $35^{\circ}$. These new course distances were therefore found to be small in difference of those. 4) It is confirmed that many new course distances for many angles can be calculated easily by using the method of ship's simple turning circle test, without observation or using the maneuvering indices and heading test method. 5) It is considered to be helpful for the safety of ship handling to draw curves of new course distances by turning circle test and $\phi_4$ - $\phi_2 by heading test, and utilize them at sea.

  • PDF

A Study on Quantifying Sailing Safety Considering Maneuverability of a Vessel (선박의 조종특성을 고려한 운항안전성능의 수치화 방법에 관한 연구)

  • You, Youngjun;Kim, Sewon;Kim, Woojin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.113-124
    • /
    • 2017
  • Recently, ship owners are requiring an assessment of sailing safety of a ship from an analysis considering maneuverability and environmental loads etc. In this paper, we propose a new approach to assess sailing safety by considering the prescribed parameters. The concept of sailing safety is developed from DP capability analysis and is based on the maneuvering simulations. While the ship is continuously disturbed due to irregular environmental loads during the simulations, it is steered to keep its course along the way points assumed along a straight path. After relative distances between four edges of the ship and allowable safety boundaries are calculated for 3 hours, the minimum values are obtained. The minimum distances are marked on a polar chart and we call this a quantified safe operation judgment chart which indicates quantified sailing safety.

The Selter Selection Plan due to Formaldehyde Leakage (산화프로필렌의 누출영향평가에 따른 안전거리 산정)

  • Seongju Oh;Sanghun Han;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.2
    • /
    • pp.11-22
    • /
    • 2024
  • This study aims to present safety distances by the damage impact assessment of the leakage of propylene oxide. As a result of the experiment, the pressure 1psi range was 52m to 169m, the radiant heat 18kW/m2 range was 63m to 163m, the AEGL-2 range was analyzed as 224m to 414m, and the fire ball diameter was analyzed to be 45m to 121m. Additionally, the extent of damages was proportional to the amount of propylene oxide stored or handled. The safe distance for a 10% lethality due to overpressure and radiant heat was calculated to be 134m, and the safe distance for a 0% lethality was 169m. Toxicity was measured at 134m with a lethality 0%. Therefore, the safety distance due to leakage of propylene oxide is calculated to be between 134m and 169m.

A Study on the Method to Calculate the New Course Distance of a Ship (선박의 신침로거리의 산정방법에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.10-20
    • /
    • 1992
  • The new course distances of a ship are considered to be the indices to indicate directly her abilities of course altercation. Generally, they have long been calculated by using the maneuvering indices obtained from her Z test. However, at sea actually the maneuvering indices can not sometimes be obtained according to ship's condition or circumstances and the new course distances can not be calculated. To find out other method to calculate the new course distances, in this paper the author analyzed them from a viewpoint of ship motion, and worked out a numerical formula to calculate them easily, using the data of ship's heading test. In order to check whether the presented method is applicable to actual ships or not, the experiment by them were also performed. The results obtained are summarized as follow: 1. The mean difference of the distance between two new course distances by the heading test and the maneuvering indices of the experimental ship was about 0.98% values of the ones by the maneuvering indices, when her heading were 10。, 20。 and 30。, using the rudder angle of 15。. These new course distances were therefore found to be almost same in values of the distance. 2. The mean difference of the distance between two new course distances by the heading test and the observation of experimental ship was about 1.16% values of the ones by the observation, when her headings were 10。, 20。 and 30。, using the rudder angle of 15。. These new course distances were therefore found to be almost same in values of the distance. 3. It is confirmed that the new course distances can be calculated easily by using the method of ship's simple heading test, without the observation or using the maneuvering indices. 4. It is considered to be helpful for the safety of shiphanding to draw curves of new course distances by ship's heading test and utilize them at sea.

  • PDF

A Study on the Development of a Traffic Accident Ratio Model in Foggy Areas (안개지역의 교통사고심각도 모형개발에 관한 연구)

  • Lee, Soo-Il;Won, Jai-Mu;Ha, Oh-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.171-177
    • /
    • 2008
  • As the risk of traffic accidents caused by mists emerged as a social problem, recently safety facilities to be prepared for mists are being actively installed when designing roads. But in some part, the facilities are being installed imprudently without analyzing the extent of occurrences of mists that would increase the risk of traffic accidents and appropriate countermeasures against the occurrences of mists are not being suggested. For that reason, in this study, first questionnaire surveys were executed on road users in order to draw the factors affecting the traffic accidents caused by mists, a mist traffic accident predicting model was developed and an accident seriousness determining model that can determine accident seriousness was developed. In this way, by extracting major factors affecting mist traffic accidents to grasp risk factors in roads to be caused by mists, safety of roads can be enhanced and traffic accidents in road operations can be decreased. As the affecting factors influencing mist traffic accidents, were extracted sightable distances, durations of mists and whether daytime or nighttime as major factors and the plan to install the facilities for the prevention of mist traffic accidents was suggested to prevent the traffic accidents to be caused by those factors and also the plan to operate roads considering sightable distances was suggested to solve the problem of insufficient sightable distances to be caused by mists was suggested. It is judged that the road safety in the areas where mists occur can be improved through foregoing methods.

DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE PARAMETERS FOR TWO-WAY STOP-CONTROLLED INTERSECTIONS (무신호 교차로의 안전 -서비스 수준 측정에 관한 연구-)

  • 이수범
    • Proceedings of the KOR-KST Conference
    • /
    • 1996.02a
    • /
    • pp.59-86
    • /
    • 1996
  • Current methods for evaluating unsignalized intersections, and estimating level-of-service (LOS) is determined from efficiency-based criteria such as little or no delay to very long delays. At present, similar procedures to evaluate intersections using safety-based criteria do not exist. The improvement of sight distances at intersections is the most effective way of improving intersection safety. However, a set of procedures is necessary to account for the limitations in current methodology. Such an approach would build upon such methods, but also account for: deficiencies in the current deterministic solution for the determination of intersection sight distances; opportunity for an accident and severity of an accident; and cost-effectiveness of attaining various levels of sight distances. In this research, a model that estimates the degree of safety at two-way stop-controlled intersections is described. Only crossing maneuvers are considered in this study because accidents caused by the crossing maneuvers are the dominate type among intersection accidents. Monte Carlo methods are used to estimate the hazard at an intersection as a function of roadway features and traffic conditions. Driver`s minimum gap acceptance in the crossing vehicles and headway distribution on the major road are used in the crossing vehicles and headway distribution on the major road are used in the model to simulate the real intersectional maneuvers. Other random variables addressed in the model are: traffic speeds; preception-reaction times of both drivers in the crossing vehicles and drivers in oncoming vehicles on the major road; and vehicles on the major roads. The developed model produces the total number of conflicts per year per vehicle and total potential kinetic energy per year per vehicle dissipated during conflicts as measurements of safety at intersections. Based on the results from the developed simulation model, desirable sight distances for various speeds were determined as 350 feet, 450 feet and 550 feet for 40 mph, 50 mph and 60 mph prevailing speed on the major road, respectively. These values are seven to eight percent less than those values recommended by AASHTO. A safety based level-of-service (LOS) is also developed using the results of the simulation model. When the total number of conflicts per vehicle is less than 0.05 at an intersection, the LOS of the intersection is `A' and when the total number of conflicts per vehicle is larger than 0.25 at an intersection, the LOS is `F'. Similarly, when the total hazard per vehicle is less than 350, 000 1b-ft2/sec2, the LOS is `F'. Once evaluation of the current safety at the intersection is complete, a sensitivity analysis can be done by changing one or more input parameters. This will estimate the benefit in terms of time and budget of hazard reduction based upon improving geometric and traffic characteristics at the intersection. This method will also enable traffic engineers in local governments to generate a priority list of intersection improvement projects.

  • PDF