• Title/Summary/Keyword: Safety Will

Search Result 5,882, Processing Time 0.035 seconds

Control of Lycoriella ingenua (Diptera: Sciaridae) in Exports of King Oyster Mushroom, Pleurotus eryngii, using Ionizing Radiation (이온화에너지를 이용한 수출용 큰느타리버섯의 긴수염버섯파리 방제)

  • Hyeonmo Ahn;Sun-Ran Cho;Hyun-Na Koo;Gil-Hah Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.333-343
    • /
    • 2023
  • King oyster mushrooms are one of the major fresh agricultural products which their exports are increasing every year in Korea. Lycoriella ingenua, is notorious insect pest in agriculture, especially in mushroom production. Larvae of L. ingenua cause mainly direct crop damage and adults are vectors of several dangerous fungal pathogens. In this study, the effects of electron beam, X-ray, and gamma-ray irradiation on the development and reproduction of L. ingenua were evaluated. In addition, to find the optimal dose to control L. ingenua in a box filled with king oyster mushrooms, an empirical experiment was conducted for each radiation. As a result, the development and reproduction of L. ingenua were inhibited at 50 Gy for all electron beam, X-ray, and gamma-ray irradiation. Additionally, at the top, middle, and bottom of the export box filled with king oyster mushrooms, the development and reproduction of L. ingenua were inhibited by electron beam with 150 Gy, X-ray with 100 Gy, and gamma-ray with 50 Gy. These results can be provided as basic data for establishing an integrated quarantine management system when exporting mushrooms. It will also contribute to the safety of agricultural products and the strengthening of export competitiveness.

Mean Teacher Learning Structure Optimization for Semantic Segmentation of Crack Detection (균열 탐지의 의미론적 분할을 위한 Mean Teacher 학습 구조 최적화 )

  • Seungbo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.113-119
    • /
    • 2023
  • Most infrastructure structures were completed during periods of economic growth. The number of infrastructure structures reaching their lifespan is increasing, and the proportion of old structures is gradually increasing. The functions and performance of these structures at the time of design may deteriorate and may even lead to safety accidents. To prevent this repercussion, accurate inspection and appropriate repair are requisite. To this end, demand is increasing for computer vision and deep learning technology to accurately detect even minute cracks. However, deep learning algorithms require a large number of training data. In particular, label images indicating the location of cracks in the image are required. To secure a large number of those label images, a lot of labor and time are consumed. To reduce these costs as well as increase detection accuracy, this study proposed a learning structure based on mean teacher method. This learning structure was trained on a dataset of 900 labeled image dataset and 3000 unlabeled image dataset. The crack detection network model was evaluated on over 300 labeled image dataset, and the detection accuracy recorded a mean intersection over union of 89.23% and an F1 score of 89.12%. Through this experiment, it was confirmed that detection performance was improved compared to supervised learning. It is expected that this proposed method will be used in the future to reduce the cost required to secure label images.

Study on Establishment of a Monitoring System for Long-term Behavior of Caisson Quay Wall (케이슨 안벽의 장기 거동 모니터링 시스템 구축 연구 )

  • Tae-Min Lee;Sung Tae Kim;Young-Taek Kim;Jiyoung Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.40-48
    • /
    • 2023
  • In this paper, a sensor-based monitoring system was established to analyze the long-term behavioral characteristics of the caisson quay wall, a representative structural type in port facilities. Data was collected over a period of approximately 10 months. Based on existing literature, anomalous behaviors of port facilities were classified, and a measurement system was selected to detect them. Monitoring systems were installed on-site to periodically collect data. The collected data was transmitted and stored on a server through LTE network. Considering the site conditions, inclinometers for measuring slope and crack meters for measuring spacing and settlement were installed. They were attached to two caissons for comparison between different caissons. The correlation among measured data, temperature, and tidal level was examined. The temperature dominated the spacing and settlement data. When the temperature changed by approximately 50 degrees, the spacing changed by 10 mm, the settlement by 2 mm, and the slope by 0.1 degrees. On the other hand, there was no clear relationship with tidal level, indicating a need for more in-depth analysis in the future. Based on the characteristics of these collected database, it will be possible to develop algorithms for detecting abnormal states in gravity-type quay walls. The acquisition and analysis of long-term data enable to evaluate the safety and usability of structures in the event of disasters and emergencies.

A Numerical Study of Building Orientation Effects on Evacuation Standard in Case of Toxic Gas Leakage (독성 가스 누출 시 건물 방향이 대피 기준에 미치는 영향에 관한 수치 해석 연구)

  • Seungbum Jo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.12-18
    • /
    • 2023
  • The effective evacuation strategy according to the accident scenario is crucial to minimize human casualties in the event of toxic gas leak accidents. In this study, the effect of the direction of a building and the location of an industrial complex on the increase in indoor concentration and outdoor diffusion was examined under the same leakage conditions, and effective evacuation criteria were established. In addition, the guidelines for building directions were suggested when constructing buildings that would mitigate human damage caused by chemical accidents. Three scenarios where buildings faced the front, side, and rear of the leakage direction were investigated through CFD simulations. The results revealed that when the building faced the industrial complex, both indoor and outdoor average gas concentrations increased significantly, reaching up to 120 times higher than the other two orientations. Moreover, the indoor space was filled with toxic gas substances more than twice in the same time due to the rapid increase of indoor concentration rate. In cases where the building's windows were positioned at the front, toxic gas stagnation occurred around the building due to pressure differences and reduced flow velocities. Based on our findings, the implementation of these guidelines will contribute to safeguarding residents by minimizing exposure to toxic gas during chemical accidents.

Immune Checkpoint Inhibitor with or without Radiotherapy in Melanoma Patients with Brain Metastases: A Systematic Review and Meta-Analysis

  • Pyeong Hwa Kim;Chong Hyun Suh;Ho Sung Kim;Kyung Won Kim;Dong Yeong Kim;Eudocia Q. Lee;Ayal A. Aizer;Jeffrey P. Guenette;Raymond Y. Huang
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.584-595
    • /
    • 2021
  • Objective: Immune checkpoint inhibitor (ICI) therapy has shown activity against melanoma brain metastases. Recently, promising results have also been reported for ICI combination therapy and ICI combined with radiotherapy. We aimed to evaluate radiologic response and adverse event rates of these therapeutic options by a systematic review and meta-analysis. Materials and Methods: A systematic literature search of Ovid-MEDLINE and EMBASE was performed up to October 12, 2019 and included studies evaluating the intracranial objective response rates (ORRs) and/or disease control rates (DCRs) of ICI with or without radiotherapy for treating melanoma brain metastases. We also evaluated safety-associated outcomes. Results: Eleven studies with 14 cohorts (3 with ICI combination therapy; 5 with ICI combined with radiotherapy; 6 with ICI monotherapy) were included. ICI combination therapy {pooled ORR, 53% (95% confidence interval [CI], 44-61%); DCR, 57% (95% CI, 49-66%)} and ICI combined with radiotherapy (pooled ORR, 42% [95% CI, 31-54%]; DCR, 85% [95% CI, 63-95%]) showed higher local efficacy compared to ICI monotherapy (pooled ORR, 15% [95% CI, 11-20%]; DCR, 26% [95% CI, 21-32%]). The grade 3 or 4 adverse event rate was significantly higher with ICI combination therapy (60%; 95% CI, 52-67%) compared to ICI monotherapy (11%; 95% CI, 8-17%) and ICI combined with radiotherapy (4%; 95% CI, 1-19%). Grade 3 or 4 central nervous system (CNS)-related adverse event rates were not different (9% in ICI combination therapy; 8% in ICI combined with radiotherapy; 5% in ICI monotherapy). Conclusion: ICI combination therapy or ICI combined with radiotherapy showed better local efficacy than ICI monotherapy for treating melanoma brain metastasis. The grade 3 or 4 adverse event rate was highest with ICI combination therapy, and the CNS-related grade 3 or 4 event rate was similar. Prospective trials will be necessary to compare the efficacy of ICI combination therapy and ICI combined with radiotherapy.

Analysis of Hazard Factors for Domestic General Purpose Ventilator using Usability Assessment (사용적합성 평가를 적용한 국산 범용인공호흡기의 위험요인 분석)

  • Gyeongmin Kwon;Seung hee Kim;You Rim Kim;Won Seuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.10-19
    • /
    • 2024
  • The purpose of this study is to conduct a summative evaluation of the usability of a general-purpose ventilator to determine whether it can be used for its intended purpose in the intended environment by the intended user and to find possible errors in use. The importance of ventilators has increased due to the accelerated aging of the population and the impact of the pandemic. In addition, patients who require ventilators are often in critical condition, so even a small error in use can be fatal. Therefore, it is important to ensure that the ventilator has sufficient stability and can be used satisfactorily without inconvenience to the user. In this study, we conducted a usability test with 17 respiratory nurses with more than 3 years of experience using the ventilator. We analyzed the task success rate, satisfaction, and opinions of the intended users while going through a total of 17 scenarios. Satisfaction was captured through an ASQ questionnaire and subjective opinions were captured through a detailed opinion questionnaire. The results showed a high level of satisfaction with an average score of 6.3 for the use scenarios. Evaluators expressed satisfaction with the overall visibility and versatility of the features, but noted that improvements were needed for calibration tasks with low task success rates. As the calibration method is different from other equipment, it was suggested that specific explanations of the calibration method and the picture that appears when calibrating are needed, and that if relevant training is provided, the equipment can be used without problems. If the usability evaluation is not limited to securing efficiency and satisfaction from the intended users, but also continuously receives feedback from users to prepare for use in emergency environments such as pandemic situations, it will be very helpful to seize opportunities such as emergency authorization in future situations, and ultimately contribute to patient safety by reducing use errors.

A Research on RC3(RMF-CMMC Common Compliance) meta-model development in preparation for Defense Cybersecurity (국방 사이버보안을 위한 RMF-CMMC 공통규정준수 메타모델 개발방안 연구)

  • Jae-yoon Hwang;Hyuk-jin Kwon
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.123-136
    • /
    • 2024
  • The U.S. Department of Defense, leading global cybersecurity policies, has two main cybersecurity frameworks: the Cybersecurity Maturity Model Certification (CMMC) for external defense industry certification, and the Risk Management Framework (RMF) for internal organizational security assessments. For Republic of Korea military, starting from 2026, the Korean version of RMF (K-RMF) will be fully implemented. Domestic defense industry companies participating in projects commissioned by the U.S. Department of Defense must obtain CMMC certification by October 2025. In this paper, a new standard compliance meta-model (R3C) development methodology that can simultaneously support CMMC and RMF security audit readiness tasks is introduced, along with the implementation results of a compliance solution based on the R3C meta-model. This research is based on practical experience with the U.S. Department of Defense's cybersecurity regulations gained during the joint project by the South Korean and U.S. defense ministries' joint chiefs of staff since 2022. The developed compliance solution functions are being utilized in joint South Korean-U.S. military exercises. The compliance solution developed through this research is expected to be available for sale in the private sector and is anticipated to be highly valuable for domestic defense industry companies that need immediate CMMC certification.

Development of Individual Temporary Equipment Material/Quality/Delivery Management Standards(Guide) for Temporary Equipment Rental Company (가설기자재 임대업체를 위한 개별 가설기자재 자재/품질/납품관리 기준(Guide) 개발)

  • Lee, Junho;Kim, Junsang;Yoou, Geonhee;Cho, Sehyun;Kim, JungYeol;Kim, Youngsuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.62-72
    • /
    • 2024
  • Due to the distribution structure of domestic temporary equipment, quality control of temporary equipment is essential because more than 80% of temporary equipment is repeated and reused. Due to this importance, the Ministry of Land, Infrastructure and Transport has proposed quality management standards for temporary equipment for 10types of temporary equipments, including steel pipe support, but the overall quality of temporary eqipment cannot be confirmed because the quality is managed through sampling quality tests. In addition, although quality control standards exist for temporary material rental company, practical utilization was investigated and analyzed to be very low as they are mainly presented based on qualitative inspection standards by visual inspection. Therefore, the purpose of this study is to develop individual temporary material/quality/delivery management standards (Guides) for temporary equipment rental company to preemptively secure the quality of temporary equipment before bringing them into the construction site. If the standards developed through this study are applied to domestic temporary equipment rental companies, it is expected that high-quality temporary equipment with secured quality will be brought into the construction site as the quality of temporary equipment quality of domestic medium and small temporary equipment rental companies is improved safety accidents related to temporary structures.

Evaluation of Hydrogeological Characteristics of Deep-Depth Rock Aquifer in Volcanic Rock Area (화산암 지역 고심도 암반대수층 수리지질특성 평가)

  • Hangbok Lee;Chan Park;Junhyung Choi;Dae-Sung Cheon;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • In the field of high-level radioactive waste disposal targeting deep rock environments, hydraulic characteristic information serves as the most important key factor in selecting relevant disposal sites, detailed design of disposal facilities, derivation of optimal construction plans, and safety evaluation during operation. Since various rock types are mixed and distributed in a small area in Korea, it is important to conduct preliminary work to analyze the hydrogeological characteristics of rock aquifers for various rock types and compile the resulting data into a database. In this paper, we obtained hydraulic conductivity data, which is the most representative field hydraulic characteristic of a high-depth volcanic bedrock aquifer, and also analyzed and evaluated the field data. To acquire field data, we used a high-performance hydraulic testing system developed in-house and applied standardized test methods and investigation procedures. In the process of hydraulic characteristic data analysis, hydraulic conductivity values were obtained for each depth, and the pattern of groundwater flow through permeable rock joints located in the test section was also evaluated. It is expected that the series of data acquisition methods, procedures, and analysis results proposed in this report can be used to build a database of hydraulic characteristics data for high-depth rock aquifers in Korea. In addition, it is expected that it will play a role in improving technical know-how to be applied to research on hydraulic characteristic according to various bedrock types in the future.

Deriving Criteria Weights for Acute Care Hospital Accreditation in South Korea: Using Analytic Hierarchy Process (급성기병원 인증기준의 가중치 도출: 계층적 분석법을 활용하여)

  • Hwa Yeong Oh;Hyeon-Jeong Lee;Minsu Ock;In Ho Kim;Ho Yeol Jang;Ji-Eun Choi
    • Quality Improvement in Health Care
    • /
    • v.30 no.1
    • /
    • pp.33-43
    • /
    • 2024
  • Purpose:The acute hospital accreditation program launched in South Korea has shown positive effects on safety culture and quality of care. However, relative weights have not yet been investigated for accreditation criteria with a hierarchical structure. This study aimed to derive the relative weights of acute-care hospital accreditation criteria. Methods: We conducted an online survey using the analytic hierarchy process (AHP) technique to assess the validity, importance, and urgency of acute hospital accreditation criteria. The AHP online survey link was distributed in November 2022 after obtaining informed consent from 10 experts in hospital accreditation. Results: 'Basic value system' ranked highest, while 'patient care system' ranked second in terms of validity, importance, and urgency. 'Performance management system' had the lowest validity and urgency, while 'organizational management system' carried the lowest importance. Within the 'patient care system' domain, 'surgery and anesthesia sedation management' scored highest in validity and importance, and 'patient care' scored highest in urgency. 'Care delivery system and evaluation' received the lowest scores for all three aspects. In the 'organizational management system' domain, infection control ranked highest in terms of validity, importance, and urgency. The lowest validity was observed for 'management and organizational operation' and the lowest importance and urgency were noted for 'human resource management'. Conclusion: The weights for validity, importance, and urgency, as shown in each domain and chapter, and the number of measurable elements included, are largely inconsistent. This study will contribute to the development of the structure and scientific improvement of accreditation standards.