• Title/Summary/Keyword: Safety Test

Search Result 8,055, Processing Time 0.033 seconds

BEEF MEAT TRACEABILITY. CAN NIRS COULD HELP\ulcorner

  • Cozzolino, D.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1246-1246
    • /
    • 2001
  • The quality of meat is highly variable in many properties. This variability originates from both animal production and meat processing. At the pre-slaughter stage, animal factors such as breed, sex, age contribute to this variability. Environmental factors include feeding, rearing, transport and conditions just before slaughter (Hildrum et al., 1995). Meat can be presented in a variety of forms, each offering different opportunities for adulteration and contamination. This has imposed great pressure on the food manufacturing industry to guarantee the safety of meat. Tissue and muscle speciation of flesh foods, as well as speciation of animal derived by-products fed to all classes of domestic animals, are now perhaps the most important uncertainty which the food industry must resolve to allay consumer concern. Recently, there is a demand for rapid and low cost methods of direct quality measurements in both food and food ingredients (including high performance liquid chromatography (HPLC), thin layer chromatography (TLC), enzymatic and inmunological tests (e.g. ELISA test) and physical tests) to establish their authenticity and hence guarantee the quality of products manufactured for consumers (Holland et al., 1998). The use of Near Infrared Reflectance Spectroscopy (NIRS) for the rapid, precise and non-destructive analysis of a wide range of organic materials has been comprehensively documented (Osborne et at., 1993). Most of the established methods have involved the development of NIRS calibrations for the quantitative prediction of composition in meat (Ben-Gera and Norris, 1968; Lanza, 1983; Clark and Short, 1994). This was a rational strategy to pursue during the initial stages of its application, given the type of equipment available, the state of development of the emerging discipline of chemometrics and the overwhelming commercial interest in solving such problems (Downey, 1994). One of the advantages of NIRS technology is not only to assess chemical structures through the analysis of the molecular bonds in the near infrared spectrum, but also to build an optical model characteristic of the sample which behaves like the “finger print” of the sample. This opens the possibility of using spectra to determine complex attributes of organic structures, which are related to molecular chromophores, organoleptic scores and sensory characteristics (Hildrum et al., 1994, 1995; Park et al., 1998). In addition, the application of statistical packages like principal component or discriminant analysis provides the possibility to understand the optical properties of the sample and make a classification without the chemical information. The objectives of this present work were: (1) to examine two methods of sample presentation to the instrument (intact and minced) and (2) to explore the use of principal component analysis (PCA) and Soft Independent Modelling of class Analogy (SIMCA) to classify muscles by quality attributes. Seventy-eight (n: 78) beef muscles (m. longissimus dorsi) from Hereford breed of cattle were used. The samples were scanned in a NIRS monochromator instrument (NIR Systems 6500, Silver Spring, MD, USA) in reflectance mode (log 1/R). Both intact and minced presentation to the instrument were explored. Qualitative analysis of optical information through PCA and SIMCA analysis showed differences in muscles resulting from two different feeding systems.

  • PDF

Evaluation of Serviceability and Flexural Performance for RC Hollow Slab by Hollow Ratio and Damping Ratio (중공율과 감쇠율을 이용한 RC 중공 슬래브의 사용성 및 휨성능 평가)

  • Jong Hoon Kim;Dong Baek Kim;Yong Gon Kim;Jae Won Lee;Jeong Ho Choi
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.930-935
    • /
    • 2022
  • Purpose: The purpose of this study is to evaluate the stiffness reduction and damping ratio of reinforced concrete hollow slabs and to analyze their performance, and to study the effect of the damping effect of hollow bodies and the stiffness reduction on the serviceability of slabs. Method: Test specimen was made in a size of 0.6m*0.21m*3.6m to evaluate the vibration effect of the slab, and the hollow ratio was set in six steps from 0.0% to 30% to measure the change in rigidity and damping according to the change in the hollow ratio. Result: As the hollow ratio increases, rigidity decreases and the natural frequency decreases, but as the mass decreases, the natural frequency increases gradually. Since energy is hardly dissipated up to the hollow ratio of 20%, the hollow ratio should be reduced by 30%. Conclusion: It was found that the bending strength degradation of the slab with a hollow ratio of about 30% is minimized, but an appropriate natural frequency can be maintained, and a certain damping effect can be obtained.

Damping Performance Evaluation of Hysteretic Strip Damper with Curvature (곡률이 있는 이력형 스트립 댐퍼의 감쇠 성능 평가)

  • Jae Won Lee;Dong Baek Kim;Yong Gon Kim;Jeong Ho Choi;Jong Hoon Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.572-581
    • /
    • 2023
  • Purpose: The purpose of this study is to improve the irregularity of the stress-strain curve and to ensure accuracy when calculating the damping effect by preventing members from moving in the off-plane direction due to eccentricity when loads are applied. Method: The specifications of the steel strips used in this study are the same, but the curvature of the strips to constitute each damper is different. Each steel strip with different curvature was arranged in an triangle, three dampers with different curvature were made, and repeated load tests were conducted, and the amount of energy dissipation was calculated to measure the performance of the damper. Result: The amount of energy dissipation significantly decreases compared to the case where there is no initial curvature, and the change in the test energy dissipation amount according to the size of the curvature is not large, and the presence or absence of the hyperbolic rate is considered an important variable. Conclusion: The period is about 78.7% longer from T=0.3 to T=0.536sec, and the response spectrum acceleration is reduced from Sa=0.54g to Sa=0.229g, so the damping effect of the damper is sufficient.

Evaluation of Particulate Matter (PM2.5) Reduction through Greenwalls in Classrooms (교실 내 벽면녹화를 통한 초미세먼지(PM2.5) 저감 효과 평가)

  • Chi-Ku Choi;Ho-Hyeong Yang;Ho-Hyun Kim;Hyuk-Ku Kwon
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.183-189
    • /
    • 2023
  • Background: The indoor air quality of classrooms, in which the capacity per unit area is high and students spend time together, must be managed for safety and comfort. It is necessary to develop an eco-friendly indoor air quality reduction method rather than biased management that relies solely on air purifiers. Objectives: In this study, plants and air purifiers were installed in middle school classrooms to evaluate the indoor PM2.5 reduction. Methods: Four middle school classrooms were selected as test beds. Air quality was monitored in real-time every one minute using IoT equipment installed in the classrooms, corridors, and rooftops. After measuring the background concentration, plants and air purifiers were installed in the classroom and the PM2.5 reduction effect was analyzed through continuous monitoring. Results: After installing the plants and air purifiers, the average PM2.5 concentration was 33.7 ㎍/m3 in the classrooms without plants and air purifiers, 25.6 ㎍/m3 in classrooms with plants only, and 21.7 ㎍/m3 in classrooms with air purifiers only. In the classroom where plants and air purifiers were installed together, it was 20.0 ㎍/m3. The reduction rates before and after installation were 4.5% for classrooms with plants only, 16.5% for classrooms with air purifiers only, and 27.6% for classrooms with both plants and air purifiers. The I/O ratio, which compares the concentration of PM2.5 in classrooms with corridors and outside air, also showed the lowest in the order of plants and air purifiers, air purifiers, and plant-only classrooms. Conclusions: The PM2.5 reduction effect of using plants was confirmed, and it is expected to be used as basic data for the development of environmentally-friendly indoor air quality improvement methods.

Constructability Evaluation of Seismic Mechanical Splice for Slurry Wall Joint Consisting of Steel Tube and Headed Bars (슬러리월의 내진설계를 위한 강재각관과 확대머리 철근으로 구성된 기계적 이음의 시공성 평가)

  • Park, Soon-Jeon;Kim, Dae-Young;Lim, In-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • South Korea has recently witnessed an increasing number of seismic events, leading to a surge in studies focusing on seismic earth pressures, as well as the attributes of geological layers and ground where foundations are established. Consequently, earthquake-resistant design has become imperative to ensure the safety of subterranean structures. The slurry wall method, due to its superior wall rigidity, excellent water resistance, and minimal noise and vibration, is often employed in constructing high-rise buildings in urban areas. However, given the separation between panels that constitute the wall, slurry walls possess limited resistance to seismic loads in the longitudinal direction. As a solution, several studies have probed into the possibility of interconnecting slurry wall panels to augment their seismic performance. In this research, we developed and evaluated a method for linking slurry wall panels using mechanical joints, including concrete-confined steel pipes and headed bars, through mock-up tests. We also assessed the constructability of the suggested method and compared it with other analogous methods. Any challenges identified during the mock-up test were discussed to guide future research in resolving them. The results of this study aid in enhancing the seismic performance of slurry walls through the development of an interconnected panel method. Further research can build on these findings to address the identified issues and improve the efficacy and reliability of the proposed method.

Analysis of Failure Behavior of Piles Embedded in Liquefied Soil Deposits (액상화 지반에 근입된 말뚝의 파괴거동 분석)

  • Cho, Chong-Suck;Han, Jin-Tae;Hwang, Jae-Ik;Park, Young-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.123-131
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. Several cases of pile failures were reported despite the fact that a large margin of safety factor was employed in their design. In this study, 1-g shaking table tests were performed in order to analyze the failure behavior of piles embedded in liquefied soil deposits by buckling instability. As a result, it can be concluded that the pile subjected to excessive axial loads $(near\;P_{cr})$ can fail easily by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, it was found that lateral loading due to lateral spreading increased lateral deflection of pile and reduced the buckling load. In addition, from the buckling shape of pile, difference between Euler's buckling and pile buckling vat observed. In the case of pile buckling, hinge formed at the middle point of the pile, not at the bottom. And in sloping grounds, location of hinge formation got lower compared with level ground because of the soil movements.

Variation of Earth Pressure Acting on Cut-and-Cover Tunnel Lining with Settlement of Backfill (되메움토의 침하에 따른 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista F.E.;Park Lee-Keun;Im Jong-Chul;Lee Young-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.27-40
    • /
    • 2006
  • Damage of cut-and-cover tunnel lining can be attributed to physical and mechanical factors. Physical factors include material property, reinforcement corrosion, etc. while mechanical factors include underground water pressure, vehicle loads, etc. This study is limited to the modeling of rigid circular cut and cover tunnel constructed at a depth of $1.0{\sim}1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. In this study, only damages due to mechanical factors in the form of additional loads were considered. Among the different types of additional, excessive earth pressure acting on the cut-and-cover tunnel lining is considered as one of the major factors that induce deformation and damage of tunnels after the construction is completed. Excessive earth pressure may be attributed to insufficient compaction, consolidation due to self-weight of backfill soil, precipitation and vibration caused by traffic. Laboratory tunnel model tests were performed in order to determine the earth pressure acting on the tunnel lining and to investigate the applicability of existing earth pressure formulas. Based on the difference in the monitored and computed earth pressure, a factor of safety was recommended. Soil deformation mechanism around the tunnel was also presented using the picture analysis method.

Electric Vehicle Wireless Charging Control Module EMI Radiated Noise Reduction Design Study (전기차 무선충전컨트롤 모듈 EMI 방사성 잡음 저감에 관한 설계 연구)

  • Seungmo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.104-108
    • /
    • 2023
  • Because of recent expansion of the electric car market. it is highly growing that should be supplemented its performance and safely issue. The EMI problem due to the interlocking of electrical components that causes various safety problems such as fire in electric vehicles is emerging every time. We strive to achieve optimal charging efficiency by combining various technologies and reduce radioactive noise among the EMI noise of a weirless charging control module, one of the important parts of an electric vehicle was designed and tested. In order to analyze the EMI problems occurring in the wireless charging control module, the optimized wireless charging control module by applying the optimization design technology by learning the accumulated test data for critical factors by utilizing the Python-based script function in the Ansys simulation tool. It showed an EMI noise improvement effect of 25 dBu V/m compared to the charge control module. These results not only contribute to the development of a more stable and reliable weirless charging function in electric vehicles, but also increase the usability and efficiency of electric vehicles. This allows electric vehicles to be more usable and efficient, making them an environmentally friendly alternative.

Efficacy of antibacterial treatments of fresh ginseng (Panax ginseng C.A. Meyer) (항균제 처리에 따른 수삼의 미생물 저감화 효과)

  • Choi, Jun-Bong;Cho, Won-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.75-79
    • /
    • 2022
  • Fresh, washed ginseng can be contaminated with microorganism loads as high as 6.5 log CFU/g for total bacteria and 4.3 log CFU/g for mold. The goal of this study was to test eight antibacterial agents on ginseng. Immersing fresh ginseng washed in 1% (w/w) sodium citrate, sodium diacetate, sodium acetate, citric acid, and sodium lactate solution for 1 h resulted in a bactericidal effect of 31.0-97.5% for total bacteria. Among the organic acids, sodium citrate had the best antibacterial effect, with total bacteria reduced from 6.5 log to 4.9 log CFU/g. A 1% (w/w) vitamin B1 lauryl sulfate solution with surfactant function by hydrophilic and hydrophobic sites can reduce 2.7 log CFU/g (99.8% inactivation) on total bacteria. In the 1% (w/w) calcium oxide solution, total bacteria were reduced by 3 log, showing an excellent inactivation effect of 99.9%. Calcium oxide is a highly useful material for inactivation of microorganisms in fresh ginseng.

Application of Intraoperative Neurophysiological Monitoring in Aortic Surgery (대동맥수술에서의 수술 중 신경계감시의 적용)

  • Jang, Min Hwan;Chae, Ji Won;Lim, Sung Hyuk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.1
    • /
    • pp.61-67
    • /
    • 2022
  • Intraoperative neurophysiological monitoring (INM) ensures the stability and safety of specific surgeries in high-risk groups. As part of INM, intensive tests are conducted during the surgical process. When INM tests are applied during surgery, a delay in notifying the operating surgeon in cases of neurological defects can cause serious irreversible sequelae to the patient. Aortic replacement, which is necessitated due to aortic aneurysms and aortic dissection, is a complicated procedure that blocks the blood flow to the heart. When arteries that branch out from the aorta and supply blood to the spinal cord are replaced, blood flow to the spinal cord decreases, resulting in spinal ischemia. In aortic surgery, INM plays an important role in preventing spinal ischemia and serious complications by quickly detecting the early signs of spinal ischemia during cross-clamping and reporting it to the surgeon. Therefore, this paper was prepared to help examiners who conduct INM by detailing the process, method, time, and warning criteria for INM. This paper identifies the need for INM in aortic surgery and the process flow for a smooth test, accurate and rapid examination, and subsequent reporting.