• Title/Summary/Keyword: Safety Test

Search Result 7,978, Processing Time 0.039 seconds

A Case of Nasal Cryptococcosis in a Domestic Shorthair Cat (코리안 쇼트헤어 고양이에서 발생한 크립토코쿠스 감염증 의심 1증례)

  • Lee, Jin Soo;Kim, Hyun Wook;Choi, Ul Soo
    • Journal of Veterinary Clinics
    • /
    • v.30 no.2
    • /
    • pp.115-118
    • /
    • 2013
  • An 8-year-old spayed female domestic shorthair cat was presented with a chief complaint of chronic nasal discharge and dyspnea. Physical examination revealed pyohemorrhagic nasal discharge, inspiratory dyspnea and stertor, and an enlarged right mandibular lymph node. Abnormalities of blood works and serum chemistry included mildly increased hematocrit, and globulin concentration. Serologic tests for FeLV and FIV, and a panel of polymerase chain reaction tests for Chlamydophila felis, Feline Calicivirus, Herpesvirus, Bordetella, Mycoplasma felis, and H1N1 influenza was all negative. Only radiographic finding showed increasing soft tissue density in the right nasal cavity and computed tomography disclosed soft tissue/fluid opacification in the right nasal cavity, paranasal sinus, and pharyinx along with slight deviation to the right of the osseous nasal septum. Focal lysis of ventral nasal septum was also suspected in CT scan. Cytological evaluation of fine needle aspirate smears of the enlarged mandibular lymph nodes revealed numerous fungal yeasts having variably thick capsule both extracellularly and intracellularly with low numbers of macrophages. Some yeasts showed narrow based budding, which was a consistent finding with Cryptococcus organisms. Serum protein electrophoresis was a polyclonal consistent with chronic infection and serum was submitted for a fungal serology panel test. In serologic tests Cryptococcus antigen titer was 1 : 32,768. In vitro culture was unsuccessful. Treatment was initiated with administration of fluconazole, clindamycin, and tocopherol. Clinical signs resolved within 3 days after the initial treatment. The cat was discharged and scheduled for periodic evaluation and continued therapy, but was lost to follow-up thereafter.

A Comparison of Dose-Response Assessments for CMR Materials in the Workplace (작업장에서 취급하는 CMR물질의 용량반응평가 방법 비교)

  • Lee, Kyung Hwa;Choi, Han Young;Kim, Chi Nyon;Roh, Young Man;Choi, Hee Jin;Park, Chae Ri
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • Objectives: Currently, there is only limited knowledge regarding the hazard of low-level exposure to CMR materials in workplaces. To overcome this limitation, a reference concentration for workers($RfC_w$) from among the risk assessment tools proposed by the US EPA is widely used to set a provisional workplace exposure level(PWEL) for CMR materials for which there are no established Korea Occupational Exposure Limits(KOELs) or subjective chemicals for work environment measurements as regulated by Korea Ministry of Employment and Labor(KMOEL). A simple European calculator of derived no effect level(SECO-DNEL) as proposed by REACH can also be used in place of $RfC_w$ to set the PWEL for chemicals. This study was performed to test the acceptability of using SECO-DNEL as an alternative to $RfC_w$ when setting a PWEL for low-level exposures. Methods: The $RfC_w$ and DNEL for the five CMR materials of dinitrogen oxide, catechol, 2-phenoxy ethanol, carbitol, and carbon black were calculated using the dose-response assessments of the US EPA for $RfC_w$ and REACH guidance for SECO-DNEL, respectively. They were compared using paired t-tests to determine the statistical differences between them. Results: For the five chemicals, the $RfC_w$ were 2.53 ppm, 0.10 ppm, 1.73 ppm, 1.66 ppm, and $0.05mg/m^3$, respectively, while the SECO-DNEL were 2.01 ppm, 0.11 ppm, 1.83 ppm, 1.77 ppm, $0.14mg/m^3$, respectively. There was no statistically significant difference between $RfC_w$ and SECO-DNEL. Conclusions: This study suggests that the SECO-DNEL could be applied in place of $RfC_w$ to set a PWEL for low-level exposure to chemicals, especially CMR materials. To further ensure the reliability of SECO-DNEL as an alternative tool, more chemicals should be applied for calculation and comparison with $RfC_w$.

Study of Quantitative Assessment Standard for Type 1 and Type 2 Gas Cylinders Using Acoustic Emission Testing (음향방출법을 이용한 Type 1 및 Type 2 가스실린더의 정량적 평가기준에 대한 연구)

  • Kim, Dong-Hyun;Lee, Sang-Bum;Kim, Kyung-Hoon;Yoon, Dong-Jin;Bae, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.176-183
    • /
    • 2014
  • Acoustic emission testing (AET) of cylinders is advantageous in that it can be directly conducted on cylinders installed in a car, without needing to dissemble them on a real-time basis. Therefore, users prefer AET over other nondestructive testing methods. Owing to these advantages of AET, it has been approved by the Department of Transportation of the U.S. as a safety evaluation method for pressure containers or as an alternative to the hydroproof testing method. This paper presents a study of the quantitative evaluation criteria for a container having ultrasonic testing defects and also for Type 1 and Type 2 gas cylinders, which are defective seamless pressure containers provided by NK, a manufacturer of pressure containers. For the Type 1 cylinder, the process from crack growth to leak was observed in a repetitive fatigue test using a 113 L container according to ASTM E 1419-02. Further, for the Type 2 cylinder, integrity was evaluated using a 119 L sound container and a container damaged by hydraulic pressure, by the slow-fill method according to ASTM E 2191-02. Based on the AET results of the Type 1 and Type 2 cylinders, quantitative evaluation criteria were established for a defective and non-defective container.

A Study on Response Characteristics of Photoelectric Type Smoke Detector Chamber Due to Dust Color (분진색상에 따른 광전식연기감지기 챔버의 응답특성에 관한 연구)

  • Lee, Ho-Sung;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.44-52
    • /
    • 2017
  • This paper is based on a study of the response characteristics of photoelectric type smoke detector chambers according to dust color. Due to an amendment to the Fire Safety Codes to automatic fire alarm systems and visual alarm device, the installation of indoor smoke detectors has become mandatory, but in Korea there is still insufficient research on the non-operation or false alarms that could arise in indoor environments by indoor dust and other environmental conditions etc. In light of this, for this study, research was conducted on the indoor adaptability of smoke detector under various colors of fiber dust that were judged to occur most frequently in among the common indoor dust, photoelectric smoke detector with the lattice-type smoke detection chamber that the smoke detector which is most popular in the country was used, and four colors of fiber dust (brown, white, gray and black) were used the test dusts for carrying out dust and sensitivity testing. Also, the voltage of the photocell part of the smoke chamber was measured, and the scattering phenomenon in the chamber was observed. The result of the testing showed that all four dust types were suitable for dust and sensitivity testing under conditions of pollution A. Yet, there were occasions, at pollution B or C, where the brown, white and gray dust would cause fail alarm during operation testing. And black dust was confirmed to cause non-operation during operation testing. In the case of brown and white dust, the voltage measurement result of the photocell part of the smoke chamber confirmed that the voltage increases as the pollution level increases, and in the case of gray and black dust, the voltage decreases.

ADHD Simple Examination Using an OSGi Base USB Terminal System (OSGi 기반 USB 단말기 시스템을 이용한 ADHD 간편검사)

  • Han, Sang-Seok;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.664-673
    • /
    • 2008
  • Recently, the ubiquitous is handled by maximum topic. New knowledge information and ubiquitous computing evolution have promoted new paradigm transfer and grand change. Also, need technology as powerful engineering approached fairly system and educational guidance side examination necessarily to overcome u-Learning base situation and studying obstacle situations. This treatise embodied handiness examination about attention shortage and excess obstacle (Attention Deficit Hyperactivity Disorder, low ADHD) who must solve so as to be square and level being increase trend in primary school using USB (Universal Serial Bus) terminal system that allow fetters to OSGi (Open Service Gateway Initiative). That OSGi base USB terminal system is easy preservation of information, safety of network, cost-cutting and maintenance by various ubiquitous system that server that load many USB terminals and OSGi uses an USB bus of high speed and construct network, there is advantage of concentration elevation and so on of week and ADHD handled in this treatise because early diagnosis and treatment are serious. The confirmed system application that can supplement paper and pens examination's shortcoming and could solve examination's problem which use computer, and help in student guidance through ADHD simpleexamination who utilize OSGi base USB terminal system. Is available by game system that system for human nature examination or intelligence test and general exam explaining and level studying, order style question investigation program, studying system for disabled person, majority that enforce in public in school this study finding does together.

Improved Design of Hydraulic Circuit of Front-end Loader for Bump Shock Reduction of an Agricultural Tractor (농업용 트랙터의 프론트 로더 충격 저감을 위한 유압 회로의 설계 개선)

  • Cho, Bong Jin;Ahn, Seong Wook;Lee, Chang Joo;Yoon, Young Hwan;Lee, Soo Seong;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.10-18
    • /
    • 2016
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements to mechanize routine agricultural tasks. When the FEL is used with a loaded bucket, careful operation is required to maintain safety and avoid spillage when the tractor passes a bump because a change in the gravity center of the tractor due to varied loadings can affect the stability of the tractor. Use of a boom suspension system consisting of accumulators and orifice dampers can be instrumental in reducing pitching vibrations while increasing the handling performance of the FEL-mounted tractor. The objective of this research was to reduce bump shocks by adding an orifice and a flow control valve to the original hydraulic circuit composed solely of accumulators. A simulation study was performed using the SimulationX program to investigate the effects of an accumulator and an orifice-throttle damper on bump shocks. Results showed that the peak pressure on a boom cylinder and the vertical acceleration of a bucket were significantly affected by use of both an accumulator and an orifice damper. In a field test conducted with a 75-kW tractor, the peak pressure of the boom cylinder, and the root mean square (RMS) vertical acceleration of the bucket and seat were reduced by on average, 23.0, 42.2, and 44.9% respectively, as compared to those measured with the original accumulator system, showing that an improved design for the accumulator hydraulic circuit can reduce bump shocks. Further studies are needed to design a tractor suspension system that includes the effects of cabin suspension and tires as well as dynamic analysis.

Influence of Estimation of Hydraulic Conductivity Function on Rainfall Infiltration into Unsaturated Soil Slope (투수계수함수의 추정이 불포화 토사 사면의 강우 침투거동에 미치는 영향)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.5-22
    • /
    • 2017
  • The procedure that combines the result of infiltration analysis into stability analysis based on the limit equilibrium method is widely used to evaluate the impact of rainfall infiltration on slope stability. Accurate prediction of rainfall infiltration is essential to the prediction of landslides caused by rainfall, requires to obtain accurate unsaturated hydraulic properties of the soil. Among the unsaturated hydraulic characteristics of the soil, the importance of the soil-water characteristic curve describing the retained water characteristics of the soil is relatively well known and the measurement by test method to obtain the SWCC is gradually increasing. However, it takes a lot of time and expenses to experimentally measure the unsaturated conductivity characteristics of the soil. Therefore, it is common practice to estimate the hydraulic conductivity function from the SWCC. Although it is widely known that the SWCC has a great influence on rainfall infiltration, studies on the effect of the hydraulic conductivity function estimated from the SWCC on rainfall infiltration are very limited. In this study, we explained how the estimation model of the hydraulic conductivity function affects rainfall infiltration and slope stability analysis. To this end, one-dimensional infiltration analysis and slope stability analysis were conducted by using the data on the SWCC of weathered granite soil widely distributed in Korea. The applicability of each estimation model is discussed through review of the analysis results.

Effect of Period of Immersion on Corrosion Potential, Anodic Polarization, and Impedance Characteristics of Reinforced Steel in Mortar (W/C: 0.6) (모르타르(W/C:0.6)의 철근의 부식전위와 양극분극 및 임피던스 특성에 미치는 재령 년수)

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.327-333
    • /
    • 2016
  • Reinforced concrete structures have found wide usage in land and maritime applications. However, the corrosion of reinforced concrete has been recognized as a serious problem from economic and safety standpoints. In previous studies, the corrosion behavior of the inner steel bar embedded in mortar (W/C: 0.4, 0.5) was investigated using electrochemical methods. In this study, multiple mortar test specimens (W/C: 0.6) with six different cover thicknesses were prepared and immersed in flowing seawater for five years. Subsequently, equations related to the cover thickness, period of immersion, and corrosion characteristics of the embedded steel bar were evaluated using electrochemical methods. Prior to immersion, the corrosion potentials indicated an increase with increasing cover thickness, and after five years, all corrosion potentials demonstrated a trend in the positive direction irrespective of the cover thickness. However, the relationships between the corrosion potential and cover thickness were not in complete agreement. Furthermore, after five years, all of the corrosion potentials indicated values that were nobler compared to those obtained prior to immersion, and their corrosion current densities also decreased compared to their values obtained prior to immersion. It was considered that the embedded steel bar was easily corroded because of the aggression of water, dissolved oxygen, and chloride ions; a higher W/C ratio also assisted the corrosion process. The corrosive products deposited on the surface of the steel bar for five years cast a resistance polarizing effect shifting the corrosion potential in the nobler direction. Consequently, it was considered that the W/C ratio of 0.6 showed nearly same results as those of W/C of 0.4 and 0.5. Therefore, the corrosion potential as well as various parameters such as the cover thickness, period of immersion, and W/C ratio must be considered at once for a more accurate evaluation of the corrosion property of reinforced steel exposed to marine environment for a long period.

A study on the face pressure control and slurry leakage possibility using shield TBM model test (축소 모형실험을 통한 토피조건별 이수압식 쉴드 TBM의 챔버압 및 이수분출 가능성 평가)

  • Koh, Sungyil;Shin, Hyunkang;La, You-Sung;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.277-291
    • /
    • 2020
  • Shield TBM is a tunnelling method that has a wider range of applications in the poor ground condition compared to conventional tunnels (Drill and Blast). Currently, a 13.3 m large-diameter slurry shield TBM is preparing for construction to pass under the Han River. Shield TBM is divided into slurry and EPB shield TBM, and management items during construction are different depending on each characteristic. In this paper, the equipment type, origin, application case and trouble case were analyzed for slurry shield TBM, which is mainly constructed in soft ground. In addition, 2D and 3D model tests were conducted on the condition of soil depth for the possibility of slurry leakage into front of the equipment, with appropriate chamber pressure. Based on this paper, it proposed to provide basic and reference data for proper excavation surface pressure and chamber pressure during construction of slurry shield TBM under soft ground conditions, and proposed measures to minimize stability and environmental decline due to slurry ejection.

Development of Data Acquisition System for Quantification of Autonomic Nervous System Activity and It's Clinical Use (자율신경계의 활성도 측정을 위한 Data Acquisition System의 개발 및 임상응용)

  • Shin, Dong-Gu;Park, Jong-Sun;Kim, Young-Jo;Shim, Bong-Sup;Lee, Sang-Hak;Lee, Jun-Ha
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Background: Power spectrum analysis method is a powerful noninvasive tool for quantifying autonomic nervous system activity. In this paper, we developed a data acquistion system for estimating the activity of the autonomic nervous system by the analysis of heart rate and respiratory rate variability using power spectrum analysis. Materials and methods: For the detection of QRS peak and measurement of respiratory rate from patient's ECG, we used low-pass filter and impedence method respectively. This system adopt an isolated power for patient's safety. In this system, two output signals can be obtained: R-R interval heart rate) and respiration rate time series. Experimental ranges are 30-240 BPM for ECG and 15-80 BPM for respiration. Results: The system can acquire two signals accurately both in the experimental test using simulator and in real clinical setting. Conclusion: The system developed in this paper is efficient for the acquisition of heart rate and respiration signals. This system will play a role in research area for improving our understanding of the pathophysiologic involvement of the autonomic nervous system in various disease states.

  • PDF