• Title/Summary/Keyword: Safety Route

Search Result 546, Processing Time 0.025 seconds

VTSO recognition of the navigation rule application to the traffic safety designated area (교통안전특정해역에서의 항법 적용에 대한 VTSO의 인식도 : 광양만 출입항로를 중심으로)

  • Park, Jeong-rok;Kim, Jae-Su;Kim, Jae-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.302-304
    • /
    • 2015
  • Waters that are under surveillance for traffic safety designated area due to increased risk of ship accidents are usually areas in the coastal waters specified by the government. However, there are still some controversies surrounding application of navigation rule in regards to these waters. Such law is especially difficult to apply to VTSO access sea route within Kwangyang bay area. Therefore, as a solution for the issues discussed in this research, the goal is to help establish a unified application method for navigation rule in relation to VTS areas, to improve marine traffic safety by separating and applying specific laws from marine safety law, and to provide a ground on which the VTSO can take a proactive and focused approach in performing monitoring duties.

  • PDF

A 90-Day Inhalation Toxicity Study of Ethyl Formate in Rats

  • Lee, Mi Ju;Kim, Hyeon-Yeong
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.333-342
    • /
    • 2017
  • Ethyl formate, a volatile solvent, has insecticidal and fungicidal properties and is suggested as a potential fumigant for stored crop and fruit. Its primary contact route is through the respiratory tract; however, reliable repeated toxicological studies focusing on the inhalation route have not been published to date. Therefore, the present study was conducted to investigate the safety of a 90-day repeated inhalation exposure in rats. Forty male and 40 female rats were exposed to ethyl formate vapor via inhalation at concentrations of 0, 66, 330, and 1,320 ppm for 6 hr/day, 5 days a week for 13 weeks. Clinical signs, body weights, food consumption, urinalysis, hematologic parameters, serum chemistry measurements, organ weights, necropsy, and histopathological findings were compared between the control and ethyl formate-exposed groups. Locomotor activity decreased during exposure and recovered afterward in male and female rats exposed to 1,320 ppm ethyl formate. Body weight and food consumption continuously decreased in both sexes exposed to 1,320 ppm ethyl formate from week 1 or 3 compared with the control values. The increases in adrenal weight and decreases in thymus weight were noted in both sexes exposed to ethyl formate at 1,320 ppm. Degeneration, squamous metaplasia of olfactory epithelium in the nasopharyngeal tissue, or both were noted in the male and female rats at 1,320 ppm and female rats at 330 ppm ethyl formate. Taken together, our results indicate that ethyl formate-induced changes were not observed in male and female rats at 330 and 66 ppm, respectively. This indicates that exposure to ethyl formate at concentrations below 66 ppm for 90 days is relatively safe in rats. This is the first report of a full-scale repeated inhalation toxicity assessment in rats and could contribute to controlling occupational environmental hazards related to ethyl formate.

A Study on the Visualization of HNS Hazard Levels to Prevent Accidents at Sea in Real-Time

  • Jeong, Min-Gi;Lee, Moonjin;Lee, Eun-Bang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.242-249
    • /
    • 2017
  • In order to develop an HNS safety management system to assess and visualize hazard levels via an automated method, we have conceptualized and configured a sample system. It is designed to quantify the risk of a vessel carrying HNS with a matrix method along navigational route and indicate hazards distribution with a contour map. The basic system which provides a visualized degree of hazards in real time has been introduced for the safe navigation of HNS ships. This is useful not only for decision making and circumstantial judgment but may also be utilized for HNS safety management with a risk base. Moreover, this system could be extended to address the navigational safety of marine traffic as well as of autonomous vessels in the near future if the sensors used are connected with IoT technology.

Development of HAZMAT Information System (수송안전정보시스템 개발)

  • 안승범;김시곤;김용진;홍우식
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.49-65
    • /
    • 2004
  • Ministry of Environment developed ‘Emergency Response Information System (ERIS)’ in 2001, which is in operation. As a next step, currently National Emergency Response Information System (NERIS) is being developed. The main difference among ERIS and NERIS is to enhance the system in the national level, including transportation of hazardous materials. This paper introduces concepts and methods applied to NERIS, especially HAZMAT, and the information system, operating strategies. Based on GIS and transportation-network data, the best route can be offered using Risk Analysis. Strategies for reporting and first-response information systems are also designed for emergencies in the paper.

Review of technology requirements of safety, security cargo for High speed freight train (고속화물열차 화물안전보안 기술요구사항 검토)

  • Han, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1595-1596
    • /
    • 2015
  • This study presents the review of technical requirements of safety and security for the developed high-speed freight train which will be serviced on the existing route of the high-speed line. There is no any experience to make a system design of high-speed freight train in Korea until now. We need to make a new regulations of commercial service.

  • PDF

A Study on the Improving the Services for Users of LRT (Light Rail Transit) by Structural Equation Model - Focus on Busan Gimhae Light Rail Transit and Busan Subway Line 4(Bansong Route) - (구조방정식을 활용한 이용자 중심의 경전철 서비스 개선에 관한 연구 - 부산~김해경전철과 부산도시철도 4호선(반송선)을 중심으로 -)

  • Jang, Seok Yong;Jung, Hun Young;Baik, Sang Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.261-272
    • /
    • 2013
  • LRT(Light Rail Transit), which has many merits compared with Heavy Rail Transit, is an effective public transport. Therefore, many local governments are pushing ahead with LRT. Busan had already adopted LRT(AGT)s like Busan Subway Line 4(Bansong Route) and Busan Gimhae Light Rail Transit(BGLRT) domestically for the first time. This study analyzes user satisfaction about the services of adopted LRTs and set right priorities of remeding their shortcomings from the user's perspective. In this paper, we surveyed safety consciousness and services satisfaction of LRT(BGLRT) users, and made two User Satisfaction Models of each LRT(BGLRT and Bansong Route) using Structural Equation Model. With established User Satisfaction Models(BGLRT Model and Bansong Route Model), we compared BGLRT and Bansong Route. Finally we found the measures and priorities for the improvements of LRT's services in the aspect of LRT users.

Searching a Navigation Path to Avoid Danger Area for Safe Driving (안전운전을 위해 위험지역을 회피하는 내비게이션 경로탐색)

  • Lee, Yong-Hu;Kim, Sang-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.171-179
    • /
    • 2013
  • The primary function of navigation system is to provide route search and road guidance for safe driving for drivers. However, the existing route search system provides a simple service that looks up the shortest route using a safe driving DB without considering different road characteristics for the safety of the drivers. In order to maintain the safe driving, rather than searching the shortest path, a navigation system, in which the danger areas and/or the dangerous time zones have been considered, is required. Therefore, in this paper we propose a strategy of searching a navigation path to avoid danger areas for safe driving by using the A* algorithm. In the strategy, when evaluating the path-specific fitness of the navigation nodes, different heuristic weights were assigned to different types of risk areas. In particular, we considered three kinds of danger areas, such as accident-prone sections where accidents occur frequently, school zones, and intersection regions, as well as the time slots when the probability of danger is high. From computer simulation, the results demonstrate that the proposed scheme can provide the way to avoid danger areas on the route searching and confirm the possibility of providing the actual service.

An Optimal Route Algorithm for Automated Vehicle in Monitoring Road Infrastructure (도로 인프라 모니터링을 위한 자율주행 차량 최적경로 알고리즘)

  • Kyuok Kim;SunA Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.265-275
    • /
    • 2023
  • The purpose of this paper is to devise an optimal route allocation algorithm for automated vehicle(AV) in monitoring quality of road infrastructure to support the road safety. The tasks of an AV in this paper include visiting node-links at least once during its operation and checking status of road infrastructure, and coming back to its depot.. In selecting optimal route, its priority goal is visiting the node-links with higher risks while reducing costs caused by operation. To deal with the problem, authors devised reward maximizing algorithm for AVs. To check its validity, the authors developed simple toy network that mimic node-link networks and assigned costs and rewards for each node-link. With the toy network, the reward maximizing algorithm worked well as it visited the node-link with higher risks earlier then chinese postman route algorithm (Eiselt, Gendreau, Laporte, 1995). For further research, the reward maximizing algorithm should be tested its validity in a more complex network that mimic the real-life.

Deep Learning Research on Vessel Trajectory Prediction Based on AIS Data with Interpolation Techniques

  • Won-Hee Lee;Seung-Won Yoon;Da-Hyun Jang;Kyu-Chul Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.1-10
    • /
    • 2024
  • The research on predicting the routes of ships, which constitute the majority of maritime transportation, can detect potential hazards at sea in advance and prevent accidents. Unlike roads, there is no distinct signal system at sea, and traffic management is challenging, making ship route prediction essential for maritime safety. However, the time intervals of the ship route datasets are irregular due to communication disruptions. This study presents a method to adjust the time intervals of data using appropriate interpolation techniques for ship route prediction. Additionally, a deep learning model for predicting ship routes has been developed. This model is an LSTM model that predicts the future GPS coordinates of ships by understanding their movement patterns through real-time route information contained in AIS data. This paper presents a data preprocessing method using linear interpolation and a suitable deep learning model for ship route prediction. The experimental results demonstrate the effectiveness of the proposed method with an MSE of 0.0131 and an Accuracy of 0.9467.

A Study on Considerations of Ship Evacuation Route for Goldentime - Based on Ship Operators Perspective - (골든타임 확보를 위한 선박 대피항로 선정 시 고려사항에 관한 연구 - 선박운항자 관점에서 -)

  • Park, Sang-Won;Park, Young-Soo;Lee, Myoung-ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.620-627
    • /
    • 2017
  • The importance of "Golden time", the early hours for saving lives in case of an accident, is being increasingly recognized day by day. Especially for marine accidents, it may take several hours for a rescue team to arrive, depending on location. Therefore, captains should always be prepared to handle situations independently. In this paper, in order to make better use of Golden Time in an emergency, we determined what the first consideration should be when selecting a ship evacuation route from perspective of the ship operator. To achieve this, we used maritime accident judgments and ship emergency response manual to identify ship evacuation priorities. AHP analysis (decision-making hierarchy analysis) was conducted for ship operators to determine consideration priorities. As a result, it was found that ship operator consider the safety of people about 6 times more important than that of the actual ship. In order to select an evacuation route, the location of coast guard ships, port of refuge, emergency anchorage, surrounding vessels, drifting and beaching factor are taken into consideration. By using these priority considerations, the decision-making processes of ship operators in emergency situations can be improved.