• Title/Summary/Keyword: Safety Performance Functions

Search Result 237, Processing Time 0.026 seconds

Reliability Based Design Optimization of the Softwater Pressure Tank Considering Temperature Effect (온도영향을 고려한 연수기 압력탱크의 신뢰성 최적설계)

  • Bae Chul-Ho;Kim Mun-Seong;Suh Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1458-1466
    • /
    • 2004
  • Deterministic optimum designs that are obtained without consideration of uncertainties could lead to unrealiable designs. Such deterministic engineering optimization tends to promote the structural system with less reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. This paper proposes the reliability based design optimization technique fur apressure tank considering temperature effect. This paper presents an efficient and stable reliability based design optimization method by using the advanced first order second moment method, which evaluates a probabilistic constraint for more accuracy. In addition, the response surface method is utilized to approximate the performance functions describing the system characteristics in the reliability based design optimization procedure.

Seismic Design of Highway Bridges using by Bridge Bearing (교량받침을 이용한 교량구조물의 내진설계)

  • 전규식;이병진;조해진;정명호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.439-446
    • /
    • 1998
  • Earthquake damage civil engineering structures every year in the world and bridges are no exception. Bridge structures have proven to be vulnerable to earthquake, sustaining damage to substructure and foundation and being totally destroys as superstructures collapse from their supporting elements. The poor seismic performance of bridge structures is surprising in view of the substantial advance made in design and construction for vertical load. Recently, bridge spans have been pushed further than before, alignment has become increasingly complex and aesthetic requirement have been become more demanding. To reduce the seismic force and to improve the safety of the advanced bridges, the bridge bearings which are the substructures and foundations and their connections to the superstructure become more important and critical elements. Therefore, the functions about seismic devices to be using as bridge bearing are discussed.

  • PDF

Development of a CAT System for Measuring and Analysing the Ride and Handling Performances of Vehicle under Windows GUI Environment (윈도우즈 GUI 환경을 이용한 자동차의 주행성능 측정.분석용 CAT 시스템의 개발)

  • 양희구;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.21-28
    • /
    • 1997
  • The vehicle handling performances have a close relation with the driver's safety. And the CAT(Computer aided testing) system has been introduced as a powerful tool for improving the handling performances. In this study, a CAT system for effectively measuring and analysing the handling performances is developed based on the windows GUI(Graphic user interface) environment. Especially, in order to derive a lot of significant handling performance parameters from a series of proving ground tests, the CAT system has various functions related to real time measurement, time domain analysis, frequency domain analysis, steady state analysis and so on.

  • PDF

Controller optimization with constraints on probabilistic peak responses

  • Park, Ji-Hun;Min, Kyung-Won;Park, Hong-Gun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.593-609
    • /
    • 2004
  • Peak response is a more suitable index than mean response in the light of structural safety. In this study, a controller optimization method is proposed to restrict peak responses of building structures subject to earthquake excitations, which are modeled as partially stationary stochastic process. The constraints are given with specified failure probabilities of peak responses. LQR is chosen to assure stability in numerical process of optimization. Optimization problem is formulated with weightings on controlled outputs as design variables and gradients of objective and constraint functions are derived. Full state feedback controllers designed by the proposed method satisfy various design objectives and output feedback controllers using LQG also yield similar results without significant performance deterioration.

Selection of Architect Engineering Concept for Barge Mounted SMR Using Systems Engineering Approach

  • Hossen, Muhammed Mufazzal;Owino, Ohaga Eric;Jung, J.C.
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.17-32
    • /
    • 2014
  • The trade-off studies in the concept development stage to assess the relative goodness of alternative systems concepts for AE (architect engineering) design for the Barge Mounted SMR (BMSMR) is introduced. With respect to design margin, system performance, schedule and risk, the design selection is cond ucted using the following characteristics; barge mobility, system safety under the natural disaster (seismic), power output, interfacing with the other system, and the additional supporting functions as desalination. There are three findings that should be remedied; deficiencies in the assumed characteristics of the system being modeled, deficiencies in the test model, and excessively stringent system requirements. This study is performed using systems engineering approach with trade off matrix method. In order to execute this work, concept development stage is divided into three (3) phases as NA (needs analysis), CE (concept exploration), and CD (concept definition).

Building Facilities Management Using the Condition Prediction Process: A Case Study of Fiberglass Doors

  • Amani, Nima
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.3
    • /
    • pp.47-52
    • /
    • 2014
  • In the last decades, Facility Management (FM) has established itself as a key building service factor.FM includes supporting services and organizing functions essential for maintaining, operating and managing physical component and material. The purpose of the paper is to develop an economical analysis for building facilities management during its service life based on limited cost. This method helps to facilities managers and engineers to make better decisions for reducing of facilities assessment costs and increasing the facilities' service life. This paper presents the preliminary development of a model involves three stages process namely data collection, economic computation and economic process optimization. This process was tested for fiberglass doors example in a building interior and exterior system. If executives can manage essential points effectively and make decisions according to a key performance index, cost can be optimized and safety can be enhanced for installation building.

The Conceptual Design of Primary Cooling System for an Advanced Research Reactor (수출전략형 연구로의 1차 냉각계통 개념설계)

  • Park, Yong-Chul;Kim, Kyung-Ryun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.503-508
    • /
    • 2005
  • An advanced Research Reactor (ARR) consists of an open-tank-type reactor assembly within a light water pool and generates thermal power of 20 MW. The thermal power is including a fission heat in the core, a fuel generated heat temporary stored in the pool, a circulating pumps generated heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the primary cooling system will be installed. In this study, the conceptual design of the primary cooling system has been carried out using a design methodology of HANARO within a permissible range of safety. As results, it has been established that the conceptual design of the primary cooling system including design requirements, performance requirements, design restrictions, system descriptions and system operation to maintain the system functions.

  • PDF

Evaluation of Bending Characteristics for Carbon FRP Structure having Circle Cross-section (원통 CFRP 구조재의 굽힘 특성 평가)

  • Kim, Jung-Ho;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.202-206
    • /
    • 2011
  • Works on the strength and stiffness in the structural members are carried out widely with various material and cross-sections with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. So, Light weight of member structures is necessary for the high performance and various functions. In this study, the CFRP flat and circular member was manufactured by CFRP prepreg sheet in autoclave. Carbon FRP is an anisotropy material whose mechanical properties change with its fiber orientation angle, so this study apply to the effects of the fiber orientation angle on the bending characteristics of the member. Each CFRP flat and circle are compared by strength and stiffness.

Seismic Design and Isolation Design for Highway Bridges (교량구조물의 내진설계 및 면진설계(교량 받침을 중심으로))

  • 전규식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.115-122
    • /
    • 1998
  • Earthquake damage civil engineering structures every year in the world and bridges are no exception. Bridge structures have proven to be vulnerable to earthquake, sustaining damage to substructure and foundation and being totally destroys as superstructures collapse from their supporting elements. The poor seismic performance of bridge structures is surprising in view of the substantial advance made in design and construction for vertical load. Recently, bridge spans have been pushed further than before, alignment has become increasingly complex and aesthetic requirement have been become more demanding. To reduce the seismic force and to improve the safety of the advanced bridges, the bridge bearings which are the substructures and foundations and their connections to the superstructure become more important and critical elements. Therefore, the functions about seismic devices to be using as bridge bearing are discussed.

  • PDF

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.