• 제목/요약/키워드: Safety Estimation

검색결과 1,647건 처리시간 0.027초

실제 선로조건에 따른 DMT 화차의 탈선안전도 평가 (The Derailment Safety Estimation of DMT Freight for Real Track Condition)

  • 이종성;엄범규;이승일;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.830-835
    • /
    • 2011
  • DMT Freight is judged that economic performance is good because can increase cargoes than existing freight. However, the existing freight cars, each with a different balance to the body structure is bogie because the vibrations may occur. Thus, by minimizing vibration over the existing freight securing the safety of the driving if you will not have major problems in cargoes. In this study, multi-body dynamic analysis tool, VI-Rail using the actually Gyeongbu Railroad line and an empty, full freight condition include curve radius, track irregularity, cent. DMT freight of the derailed wagons were assessed for safety analysis. Full and empty freight conditions for parity in the Gyeongbu Railroad line(Dongdaegoo ${\leftrightarrow}$Gyungsan) derailment safety analysis, such as derailment safety coefficient and the radius wheel road decrement, echoing the curve and the orbit is affected by the irregularity was found. Full freight condition than the empty conditions showed a significant derailment safety. Overall, the limits of derailment coefficient (Q/P=0.8) and wheel road decrement limits (${\Delta}P/P=0.6$) is less safe with me confirmed that the derailment safety.

  • PDF

Incorporation of collapse safety margin into direct earthquake loss estimate

  • Xian, Lina;He, Zheng;Ou, Xiaoying
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.429-450
    • /
    • 2016
  • An attempt has been made to incorporate the concept of collapse safety margin into the procedures proposed in the performance-based earthquake engineering (PBEE) framework for direct earthquake loss estimation, in which the collapse probability curve obtained from incremental dynamic analysis (IDA) is mathematically characterized with the S-type fitting model. The regressive collapse probability curve is then used to identify non-collapse cases and collapse cases. With the assumed lognormal probability distribution for non-collapse damage indexes, the expected direct earthquake loss ratio is calculated from the weighted average over several damage states for non-collapse cases. Collapse safety margin is shown to be strongly related with sustained damage endurance of structures. Such endurance exhibits a strong link with expected direct earthquake loss. The results from the case study on three concrete frames indicate that increase in cross section cannot always achieve a more desirable output of collapse safety margin and less direct earthquake loss. It is a more effective way to acquire wider collapse safety margin and less direct earthquake loss through proper enhancement of reinforcement in structural components. Interestingly, total expected direct earthquake loss ratio seems to be insensitive a change in cross section. It has demonstrated a consistent correlation with collapse safety margin. The results also indicates that, if direct economic loss is seriously concerned, it is of much significance to reduce the probability of occurrence of moderate and even severe damage, as well as the probability of structural collapse.

단순화된 패리티 공간기법을 이용한 원전 다중센서 신호검증 (Redundant Sensor Signal Validation of Nuclear Power Plants Using the Simplified Parity Space Method)

  • 오성헌;김대일;주운표;정윤형;류부형;임장현;김건중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.317-319
    • /
    • 1993
  • The function estimation characteristics of neural networks can be used for sensor signal validation of a system. In case of applying the neural networks to signal validation, it is a important problem that the redundant sensor signals used as a input signal of neural networks should be validated. In this paper, we simplify the conventional parity space method in order to input the validated signal to the neural networks and also propose the sensor signal validation method, which estimates the reliable sensor output combining neural networks with the simplified parity space method. The acceptability of the proposed signal validation method is demonstrated by using the simulation data in safety injection accident of nuclear power plants.

  • PDF

Reliability analysis-based safety factor for stability of footings on frictional soils

  • Parviz Tafazzoli Moghaddam;Pezhman Fazeli Dehkordi;Mahmoud Ghazavi
    • Geomechanics and Engineering
    • /
    • 재33권6호
    • /
    • pp.543-552
    • /
    • 2023
  • The design of foundations based on a deterministic approach may not be safe and reliable occasionally, since soils sometimes show considerable spatial variability, and thus, significant uncertainties in turn affect the estimation of footing bearing capacity. The design of footing on cohesionless stratums on the basis of reliability analysis has not received much attention. This paper performs two-dimensional random finite difference analyses of shallow strip footings on a spatially variable frictional soil considering correlation structure. Friction angle (ϕ) is considered as a log-normally distributed random variable and Monte Carlo Simulation is then performed to determine the statistical response based on the random fields. A new approach reliability-based safety factor is defined based on various reliability levels by considering the coefficient of variation of ϕ and correlation length in both the horizontal and vertical directions. The comparison of the probabilistic safety factor and the conventional one illustrates the limitations of the deterministic safety factor and provides insight into how the heterogeneity of soils properties affects the required safety factor. Results show that the conventional safety factor of 3 can be conservative in some cases, especially for soil with low values of mean ϕ and COVϕ.

위성발사체 궤도 및 순간낙하점 추정을 위한 융합필터 (Fusion Filter for the Trajectory and Instantaneous Impact Point Estimation of a Satellite Launch Vehicle)

  • 류성숙;김정래;송용규;고정환;심형석
    • 한국항행학회논문지
    • /
    • 제12권4호
    • /
    • pp.295-303
    • /
    • 2008
  • 고속으로 장거리를 비행하는 위성발사체는 고장 시 큰 위험을 줄 수 있으므로, 비행 궤도를 감시하고 고장여부를 판단하는 비행안전 시스템의 운용이 필수적이다. 비행안전 시스템에 적용되는 필터는 일반적인 위치추적 필터와는 달리 필터 정확성 보다는 신뢰성이 우선 시 되어야 하고, 정확한 순간낙하점 추정을 위해서는 궤도 위치뿐만 아니라 속도 역시 중요하게 여겨져야 한다. 본 논문에서는 KSLV-I 위성발사체 발사 시 운용되는 추적 센서를 적용하는 융합필터를 구성하고 궤도 및 순간낙하점을 계산하여 구성된 필터의 성능을 시험하였다.

  • PDF

개조 선박의 A-Frame 설치 및 운용을 위한 다물체 동역학 시뮬레이션 기반 동적 안전성 검토에 관한 연구 (A study on the Multibody Dynamics Simulation-based Dynamic Safety Estimation for Installation and Operation of A-Frame in Retrofit Vessel)

  • 오재원;김형우;권오순;강현
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.789-798
    • /
    • 2020
  • This paper considers the development of the dynamic analysis model and simulation-based operation safety estimation of A-Frame to be applied to the test evaluation support vessel for real sea test. The support vessel will be manufactured by modifying the existing offshore support vessel. Also, development and installation of various sensors and supporting facilities for test evaluation are under preparation. Among these facilities, A-Frame is an equipment that transfers marine equipment from ship deck to the sea floor, and is being designed to transfer up to 50 ton class equipment. However, the A-Frame is a moving equipment using hydraulic cylinders. When the 50 ton equipment is attached and transferred to A-Frame, the buckling of cylinders may occur or A-Frame becomes inoperable due to the influence of huge inertia. For this reason, safety verification should be performed using dynamic analysis techniques that can take into account huge inertia forces in the design of A-Frame. Therefore, in this study, A-Frame and ship behavior were modeled using dynamic analysis method, and the applied loads of various equipment including hydraulic cylinder of A-Frame was measured and the operation safety review was performed.

Breakdown Characteristics and Lifetime Estimation of Rubber Insulating Gloves Using Statistical Models

  • Kim, Doo Hyun;Kang, Dong Kyu
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.36-42
    • /
    • 2002
  • This paper is aimed at predicting the life of rubber insulating gloves under normal operating stresses from relatively rapid test performed at higher stresses. Specimens of rubber insulating gloves are subject to multiple stress conditions, i.e. combined electrical and thermal stresses. Two modes of electrical stress, step voltage stress and constant voltage stress are used in specimen aging. There are two types of test for electrical stress in this experiment: the one is Breakdown Voltage (BDV) test under step voltage stress and thermal stress and the other is lifetime test under constant voltage stress and temperature stress. The ac breakdown voltage defined as the break-down point of insulation that leakage current excesses a limit value, l0mA in this experiment, is determined. Because the very high variability of aging data requires the application of statistical model, Weibull distribution is used to represent the failure times as the straight line on Weibull probability paper. Weibull parameters are deter-mined by three statistical methods i.e. maximum likelihood method, graphical method and least squares method, which employ SAS package, Weibull probability paper and FORTRAN, respectively. Two chosen models for predicting the life under simultaneous electrical and thermal stresses are inverse power model and exponential model. And the constants of life equation for multistress aging are calculated using numerical method, such as Gauss Jordan method etc.. The completion of life equation enables to estimate the life at normal stress based on the data collected from accelerated aging test. Also the comparison of the calculated lifetimes between the inverse power model and the exponential model is carried out. And the lifetimes calculated by three statistical methods with lower voltage than test voltage are compared. The results obtained from the suggested experimental method are presented and discussed.

Development of Internal Dose Assessment Procedure for Workers in Industries Using Raw Materials Containing Naturally Occurring Radioactive Materials

  • Choi, Cheol Kyu;Kim, Yong Geon;Ji, Seung Woo;Koo, Boncheol;Chang, Byung Uck;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.291-300
    • /
    • 2016
  • Background: It is necessary to assess radiation dose to workers due to inhalation of airborne particulates containing naturally occurring radioactive materials (NORM) to ensure radiological safety required by the Natural Radiation Safety Management Act. The objective of this study is to develop an internal dose assessment procedure for workers at industries using raw materials containing natural radionuclides. Materials and Methods: The dose assessment procedure was developed based on harmonization, accuracy, and proportionality. The procedure includes determination of dose assessment necessity, preliminary dose estimation, airborne particulate sampling and characterization, and detailed assessment of radiation dose. Results and Discussion: The developed dose assessment procedure is as follows. Radioactivity concentration criteria to determine dose assessment necessity are $10Bq{\cdot}g^{-1}$ for $^{40}K$ and $1Bq{\cdot}g^{-1}$ for the other natural radionuclides. The preliminary dose estimation is performed using annual limit on intake (ALI). The estimated doses are classified into 3 groups ( < 0.1 mSv, 0.1-0.3 mSv, and > 0.3 mSv). Air sampling methods are determined based on the dose estimates. Detailed dose assessment is performed using air sampling and particulate characterization. The final dose results are classified into 4 different levels ( < 0.1 mSv, 0.1-0.3 mSv, 0.3-1 mSv, and > 1 mSv). Proper radiation protection measures are suggested according to the dose level. The developed dose assessment procedure was applied for NORM industries in Korea, including coal combustion, phosphate processing, and monazite handing facilities. Conclusion: The developed procedure provides consistent dose assessment results and contributes to the establishment of optimization of radiological protection in NORM industries.

Environment Assessing for Airborne Radioactive Particulate Release-introduction of Methods in IAEA Safety Report Series No.19

  • Meng, Dan;Yang, Liu;Shen, Fu;Yang, Yi;Ma, Yinghao;Ma, Tao;Zhang, Zhilong;Fu, Cuiming
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.409-417
    • /
    • 2016
  • Background: Airborne radioactive particulate in many important nuclear facilities (particularly nuclear power plants) will have a strong impact on the relative public dose if they are released into the corresponding environment traversing the stack or vents. The radiation protection researchers have regarded the relative environment assessing and estimation of public doses. And the model of assessing impact of discharges radioactive substance to the environment have been recommended by many international organizations (e.g. IAEA) with the nuclear energy safety and radiation protection. Materials and Methods: This paper introduced the generic models that were suggested by International Atomic Energy Agency (IAEA), for use in assessing the impact of discharges of radioactive substances to the environment (e.g. IAEA Safety Report Series No.19). Results and Discussion: The writers of this paper, based on the recommend methods, assessed the discharge limits in some airborne radioactive substances discharging standards. The reasons that IAEA method are introduced are mainly the following considerations: IAEA is one of international organizations with some authorities in the nuclear energy safety and radiation protection; and, more important, the recommend modes are operational methods rather than the methods having little operations such as that have used by some researchers. Conclusion: It is wish that the introduced methods in this paper can be referenced in draft or revise of the standards related to discharges of radioactive substances to the environment.

다물체 동역학을 이용한 양광펌프 거치대의 유압 실린더 설계 및 구조 안전성 평가 (Hydraulic Cylinder Design of Lifting Pump Mounting and Structural Safety Estimation of Mounting using Multi-body Dynamics)

  • 오재원;민천홍;이창호;홍섭;김형우;여태경;배대성
    • 한국해양공학회지
    • /
    • 제29권2호
    • /
    • pp.120-127
    • /
    • 2015
  • When a deep-seabed lifting pump is kept this device has bending and deformation in the axis due to its long length(8m). These influences can be caused a breakdown. Therefore, a mounting must be developed to keep the lifting pump safe. This paper discusses the hydraulic cylinder design of the lifting pump and structural safety estimation of the mounting using SBD(simulation-based design). The multi-body dynamic simulation method is used, which has been used in the automotive, structural, ship building, and robotics industries. In this study, the position and diameter of the hydraulic cylinder were determined based on the results of the strokes and buckling loads for the design positions of the hydraulic cylinder. A structural dynamic model of the mounting system was constructed using the determined design values, and the structural safety was evaluated using this dynamic model. According to these results, this system has a sufficient safety factor to manufacture.