• 제목/요약/키워드: Safety Design

검색결과 9,551건 처리시간 0.036초

고층 공동주택의 피난안전을 위한 발코니계획에 관한 연구 (A Study on the High-rise Apartment Balcony Plan for Egress Safety Design)

  • 이용재
    • 한국화재소방학회논문지
    • /
    • 제15권3호
    • /
    • pp.63-69
    • /
    • 2001
  • 공동주택에서 예고 없이 발생되는 화재로부터 인명을 보호하기 위해서는 설계단계에서 인명안전설계에 대한 대책이 최우선적으로 고려되어야 한다. 공동주택의 발코니계획은 화원으로부터 화염의 전파를 지연시키며, 거주자에게 피난의 경로로 제공된다는 측면에서 공동주택의 피난안전설계의 요소로서 매우 중요하다. 본 연구는 평면유형별 피난안전성능을 개선하기 위한 디자인 방법과 발코니 상세계획의 방안을 제시하였다.

  • PDF

신뢰도를 활용한 도로시설 교통안전성 평가기법 (Evaluation of Highway Traffic Safety using Reliability Theory)

  • 오흥운
    • 한국도로학회논문집
    • /
    • 제18권4호
    • /
    • pp.77-82
    • /
    • 2016
  • PURPOSES : This paper proposes a reliability index for the safety evaluation of freeway sections. It establishes a reliability index as a safety surrogate on freeways considering speeds and speed dispersions. METHODS : We collated values of design elements including radii, curve lengths, vertical slopes (absolute values), superelevations, and vertical slopes from seven freeway sections in Korea. We also collected data about driving speeds, traffic accidents, and their deviations. We established a reliability index using these variables. RESULTS : The average radii, curve lengths, and superelevations are highly correlated with the incidence of traffic accidents. Deviations in radius and curve lengths show an especially high correlation. The reliability index, derived from speed and speed dispersions of the seven freeway sections, also correlated highly with accidents with a correlation index of 0.63. CONCLUSIONS : Since the reliability index obtained from speed and speed dispersions are highly correlated with traffic accidents, we conclude that a reliability index can be a safety surrogate on freeways considering speeds and speed dispersions together in terms of design and operational levels.

선박해양공학 분야에서 인간공학기술의 활용현황 및 전망 (State of the Art of Human Factors Technologies for Ships and Ocean Engineering)

  • 김홍태;이종갑;이동곤;박진형
    • 대한인간공학회지
    • /
    • 제20권2호
    • /
    • pp.99-111
    • /
    • 2001
  • Human factors is a key issue in the maritime industry including ship design and navigation safety. Human factors for ship design is to optimize safety and convenience of crews and passengers. And human factors for navigation safety is to minimize marine accident occurrence by human and organizational error. There are several technical requirements to incorporate human factors and marine system Risk analysis. human behaviour analysis and human M&S(modeling and simulation) are examples of technical requirements. This paper provides the key issues and technologies of human factors for ship design and navigation safety.

  • PDF

A Design-Decision Support Framework for Evaluation of Design Options in Passenger Ship Engine Room

  • 김수웅
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.277-280
    • /
    • 2006
  • Most real world design evaluation and risk-based decision support combine quantitative and qualitative (linguistic) variables. Decision-making based on conventional mathematics that combines qualitative and quantitative concepts always exhibit difficulty in modelling actual problems. The successful selection process for choosing a design/procurement proposal is based on a high degree of technical integrity, safety levels and low costs in construction, corrective measures, maintenance, operation, inspection and preventive measures. However, the objectives of maximising the degree of technical performance, maximising the safety levels and minimising the costs incurred are usually in conflict, and the evaluation of the technical performance, safety and costs is always associated with uncertainties, especially for a novel system at the initial concept design stage. In this paper, a design-decision support framework using a composite structure methodology grounded in approximate reasoning approach and evidential reasoning method is suggested for design evaluation of machinery space of a ship engine room at the initial stages. It is a Multiple Attribute Decision-Making (MADM) or Multiple Criteria Decision Making (MCDM) framework, which provides a juxtaposition of cost, safety and technical performance of a system during evaluation to assist decision makers in selecting the winning design/procurement proposal that best satisfies the requirement in hand. An illustrative example is used to demonstrate the application of the proposed framework.

  • PDF

안전중시 시스템의 모델기반 설계에서 메타모델을 활용한 기능 고장의 탐지 및 안전 요구사항 검증 (Detection of Functional Failure and Verification of Safety Requirements Using Meta-Models in the Model-Based Design of Safety-Critical Systems)

  • 김영현;이재천
    • 한국산학기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.308-313
    • /
    • 2016
  • 사용자의 요구사항 증대와 기술의 발전으로 인해 현대 시스템은 계속해서 복잡해지고 있어 시스템 설계 오류 및 고장 등으로 인한 시스템 운용 중의 사고도 빈번해지고 있다. 특히 사고로 인한 인적 및 물적 피해가 심각할 수 있는 시스템을 안전중시 시스템이라고 부른다. 이러한 시스템에 대해서는 안전성을 확보하기 위한 특별한 노력이 필요한데 이에 부응하여 본 논문에서는 개발 초기 단계부터 안전성을 반영하면서 시스템 설계를 수행할 수 있는 방법을 연구하였다. 특히 안전 메타모델을 활용해서 기능의 고장 탐지를 수행할 수 있는 시스템 설계 방법을 제시하였다. 구체적으로 국제 안전 표준들을 참고하여 안전 데이터를 추출하고, 시스템 모델링 표준 언어인 SysML을 이용하여 안전 데이터 메타모델을 생성한 후, 시스템 설계에서 안전 데이터 메타모델을 효과적으로 활용하는 모델 기반 안전 시스템 설계 방법을 제시하였고, 이를 기반으로 안전요구사항 생성 및 시뮬레이션 방법에 관하여 논의하였다. 마지막으로 사례연구로서 자동차 시스템 설계에서 SysML 기반 모델링 및 시뮬레이션을 통해 기능 고장의 탐지나 안전 요구사항의 검증이 가능한 것을 보여 주었다. 본 연구에서 안전 데이터에 대한 메타모델의 활용을 통해 안전 데이터 및 정보의 구성 및 관리를 효율적으로 수행할 수 있는 것과, 메타모델 기반 시스템 설계와 시뮬레이션을 활용하여 설계 오류를 줄임으로써 요구사항에 맞는 시스템 설계를 할 수 있음을 제시하였다.

설계 요건 중심의 인간-시스템 인터페이스 개발 프로세스 (Design Requirements-Driven Process for Developing Human-System Interfaces)

  • 함동한
    • 대한안전경영과학회지
    • /
    • 제10권1호
    • /
    • pp.83-90
    • /
    • 2008
  • Development of human-system interfaces (HSI) supporting the interaction between human and automation-based systems, particularly safety-critical sociotechnial systems, entails a wide range of design and evaluation problems. To help HSI designers deal with these problems, many methodologies from traditional human-computer interaction, software engineering, and systems engineering have been applied; however, they have been proved inadequate to develop cognitively well engineered HSI. This paper takes a viewpoint that HSI development is itself a cognitive process consisting of various decision making and problem solving activities and then proposes a design requirements-driven process for developing HSI. High-level design problems and their corresponding design requirements for visual information display are explained to clarify the concept of design requirements. Lastly, conceptual design of software system to support the requirements-driven process and designers' knowledge management is described.

건축구조물의 구조내화설계를 위한 설계화재모델에 관한 연구 (A Study on the Design Fire Model for Structural Fire Resistant Design in Buildings)

  • 권영진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.256-257
    • /
    • 2019
  • Recently, the fire risk of architectural structures is increasing due to the super high - rise and super - size of the buildings. Therefore, the direction of fire safety design tends to change from the existing design to the performance - based design. In particular, domestic fire safety policies are divided into building law and fire fighting law. In case of fire fighting law, performance design is already carried out. Therefore, this study summarizes the prediction formula for fire characteristics among the structural fireproofing design field as shown in Fig. 1 according to this situation, and compares it with the standard method of each country in particular.

  • PDF

안전관리를 위한 AHP 설비 평가시스템 개발에 관한 연구 (A Study on the Development of Analytic Hierarchy Process Plant Evaluation System for Safety Management)

  • 윤여권;조용욱;양광모
    • 대한안전경영과학회지
    • /
    • 제14권3호
    • /
    • pp.127-134
    • /
    • 2012
  • Plant safety management that is enforcing introducing more than 95% in domestic manufacturing industry is using total plant efficiency by the evaluation index, and as a result, can see a lot of examples that plant productivity, economy and safety is increased. The efficient safety estimation for a business should analyze an accident data by considering every possible and potential factor. This study's purpose centers plant safety management activities that is management system for plant production and safety efficiency's maximization, plant evaluation system that plant safety management activities factor(reliability, maitainability, safety, service quality) that is enforcing in manufacturing industry can develop evaluation model that can evaluate qualitative activities by quantitative activities in process that maximize plant safety management wishes to do design.

EVALUATION OF BRACHYTHERAPY FACILITY SHIELDING STATUS IN KOREA OBTAINED FROM RADIATION SAFETY REPORTS

  • Keum, Mi Hyun;Park, Sung Ho;Ahn, Seung Do;Cho, Woon-Kap
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.695-700
    • /
    • 2013
  • Thirty-eight radiation safety reports for brachytherapy equipment were evaluated to determine the current status of brachytherapy units in Korea and to assess how radiation oncology departments in Korea complete radiation safety reports. The following data was collected: radiation safety report publication year, brachytherapy unit manufacturer, type and activity of the source that was used, affiliation of the drafter, exposure rate constant, the treatment time used to calculate workload and the HVL values used to calculate shielding design goal values. A significant number of the reports (47.4%) included the personal information of the drafter. The treatment time estimates varied widely from 12 to 2,400 min/week. There was acceptable variation in the exposure rate constant values (ranging between 0.469 and 0.592 ($R{\cdot}m^2/Ci{\cdot}hr$), as well as in the HVLs of concrete, steel and lead for Iridium-192 sources that were used to calculate shielding design goal values. There is a need for standard guidelines for completing radiation safety reports that realistically reflect the current clinical situation of radiation oncology departments in Korea. The present study may be useful for formulating these guidelines.

AUTOMATED HAZARD IDENTIFICATION FRAMEWORK FOR THE PROACTIVE CONSIDERATION OF CONSTRUCTION SAFETY

  • JunHyuk Kwon;Byungil Kim;SangHyun Lee;Hyoungkwan Kim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.60-65
    • /
    • 2013
  • Introducing the concept of construction safety in the design/engineering phase can improve the efficiency and effectiveness of safety management on construction sites. In this sense, further improvements for safety can be made in the design/engineering phase through the development of (1) an automated hazard identification process that is little dependent on user knowledge, (2) an automated construction schedule generation to accommodate varying hazard information over time, and (3) a visual representation of the results that is easy to understand. In this paper, we formulate an automated hazard identification framework for construction safety by extracting hazard information from related regulations to eliminate human interventions, and by utilizing a visualization technique in order to enhance users' understanding on hazard information. First, the hazard information is automatically extracted from textual safety and health regulations (i.e., Occupational Safety Health Administration (OSHA) Standards) by using natural language processing (NLP) techniques without users' interpretations. Next, scheduling and sequencing of the construction activities are automatically generated with regard to the 3D building model. Then, the extracted hazard information is integrated into the geometry data of construction elements in the industry foundation class (IFC) building model using a conformity-checking algorithm within the open source 3D computer graphics software. Preliminary results demonstrate that this approach is advantageous in that it can be used in the design/engineering phases of construction without the manual interpretation of safety experts, facilitating the designers' and engineers' proactive consideration for improving safety management.

  • PDF