• Title/Summary/Keyword: Safety Belt

Search Result 148, Processing Time 0.023 seconds

A Study on Dynamic Analysis and Fatigue Life of the Belt in the OHT Vehicle (OHT 차량 벨트 동특성 및 피로 수명에 관한 연구)

  • Jung Il-Ho;Kim Chang-Su;Cho Dong-Hyeob;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1085-1092
    • /
    • 2005
  • The OHT(Over Head Transportation) Vehicle transports heavy products quickly and repeatedly at the industrial workplace. The belt in the OHT vehicle is used to support the weight of the OHT Cage. The fatigue of the belt is caused by the dynamic load during the operation time. Since the fatigue fracture of the belt affects the safety at the workplace, the correct prediction of the dynamic load is necessary to calculate the fatigue life of the belt on the design step. In this paper a computer aided analysis method is proposed for the belt in the early design stage using dynamic analysis, stress analysis, belt tensile test, belt fatigue test and fatigue lift prediction method. From the dynamic load time histories and the stress of the belt FE model, a dynamic stress time history is produced. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The method developed in this paper is used to reduce the time and cost for designing the OHT belt in different environment and condition.

Injury Study of Older Children Anthropomorphic Test Device with CRS Harness Belt and Vehicle Level Crash Test (CRS 하네스 벨트 사용에 따른 어린이 인체 모형 상해 연구 및 실차 레벨 충돌 평가)

  • Kang, Seungkyu;Yang, Minho;Kim, Jeonghan;Jin, Jeongmoon;Lee, Sooyul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 2017
  • For years, Q1.5 (anthropomorphic test device for 1.5 years old infant) and Q3 (anthropomorphic test device for 3 years old infant) dummy protection has been improved considerably by the effort of EuroNCAP. ISOFIX strength of vehicle structure has increased and many child occupant protection tests have made child restraint system (hereafter CRS) optimized for child safety. However, from 2016, EuroNCAP changed the dummy which is used for the child occupant protection from Q1.5/Q3 to Q6/Q10 and these were also adopted in KNCAP from 2017. Therefore, a new method is required to secure the safety for older children In this research, child dummies were tested by using adult safety systems, and the different results from each adult restraint system were compared. Finally, dummies were tested with the CRS harness belt commonly used for infants, which has yielded significant result. In this research, mid-sized sedan and small SUV were used for the test. The researchers of this paper performed sled tests to correlate between the different adult safety belt system and child injury. Following the sled test, an actual vehicle test was conducted to gather the injury data of Q-dummy with the CRS harness belts. This paper will show the advantages of applying a pre-tensioner in the second row for child protection and the necessity of CRS which has its own harness belts to improve safety for older children.

Promoting Safety Behaviors Among Korean American Students in USA: Evaluation of the Risk Watch$\circledR$ Curriculum

  • Gong, Deukhee;Orpinas, Pamela
    • Korean Journal of Health Education and Promotion
    • /
    • v.20 no.4
    • /
    • pp.79-93
    • /
    • 2003
  • Childhood injuries are the primary cause of death and disability among children aged 5 to 14. Consistent practice of learned safety behaviors can reduce the occurrence of severe injuries among children. However, safety behavior concern is low among Korean-American children specifically and American children, in general. The objective of the study is to evaluate the impact of an unintentional injury prevention curriculum, Risk Watch among Korean-American children. A quasi-experimental design with a nonequivalent control group was used for the designed of the study. Two intervention and two control Korean schools in Atlanta participated in this study. The intervention consisted of weekly lessons in traffic, bicycle, pedestrian, and fire safety. One hundred and two students completed a pre-test and a post-test. The main outcomes were safety behaviors (seat belt use or helmet use), behavioral intentions, and safety knowledge. Analysis of covariance was used for the statistical analyses. Strong intervention effects were found for increasing knowledge of all safety topics in the intervention group. Additionally, statistically significant intervention effects were detected for increasing seat belt and helmet use, as well as behavioral intentions of wearing a seat belt and wearing a helmet, among pre-kindergarten and kindergarten students. For students in grades 1 and 2, intervention effects were found for increasing helmet use. Among students in grades 3 to 8, the intervention group showed statistically significant increases for seat belt use. Limitations of the study and recommendations for modifying and supporting unintentional injury prevention programs for school children are discussed.

An Efficient Analysis Model for Process Quality Information in Manufacturing Process of Automobile Safety Belt Parts (자동차 안전벨트 부품 제조공정에서의 효율적 공정품질정보 분석 모형)

  • Kong, Myung Dal
    • Journal of the Korean Institute of Plant Engineering
    • /
    • v.23 no.4
    • /
    • pp.29-38
    • /
    • 2018
  • Through process quality information, the time required for process quality analysis has been drastically shortened, the process defect rate has been reduced, and the manufacturing lead time has been shortened and the on-time delivery rate has been improved. Therefore, The purpose of this study is to develop a quality information analysis system model that effectively shortens the time required for process quality analysis in automobile safety belt parts manufacturing process. As a result of experiments on communication operation between manufacturing execution system (MES) quality server, injection machine control computer, injection machine programmable logic controller (PLC) and terminal, in analyzing quality information, the conventional handwriting input method took an average of 20 minutes, but the new multi-network method took about 2 minutes on average. In addition, the process defect rate was reduced by 13% and the manufacturing lead time was shortened from 28 hours to 20 hours. The delivery compliance rate improved from 96 to 99%.

A study of rear seat belts geometric characteristics for rear seated occupants protections (뒷좌석 승객 보호를 위한 안전띠의 기하학적 특성에 대한 연구)

  • Youn, Younghan;Park, Jiyang;Lee, Seungsang;Kim, Minyoung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • The protection of frontal seat passengers in both driver and front seated occupant has been more focused from the auto industries as well as regulatory bodies more than 40 years. Recently, their interests have been extended to rear seat occupants especially children and female occupants. However, the current available safety devices for the rear seat occupants are seat belt only. According to the previous researchers, the injury level of the rear seat passengers tend to be higher than the injury level of the frontal seat passengers. In this study, the optimal location of seat belts anchorages to enhance rear passengers crashworthiness are studied. FEM models are designed in accordance with regulation of KMVSS102, UN R44, UN R16, and UN R14. and three point belts are fitted on the HybridIII 5th percentile dummy and HybridIII 50th percentile dummy. The combined injury value used HIC15, Nij, Chest deflection, Femur force are used to evaluate rear seat belt anchorage optimal locations.

Optimization of Seat belt Load Limiter for Crashworthiness (안전벨트 충돌하중특성 최적화)

  • Seo, bo pil;Choi, sung chul;Kim, beom jung;Han, sung jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • Under the full frontal crash event, seatbelt system is the most typical and primary restraint device that prevents the second impact between an occupant and vehicle interior parts by limiting the forward motion of an occupant in the vehicle occupant packaging space. Today's restraint systems typically include the three-point seat belt with the pretensioner and the load limiter. A pretensioner preemptively tightens the seat belts removing any slack between a passenger and belt webbing which leads to early restraint of a passenger. After that a load limiter controls level of belt load by releasing the belt webbing to reduce occupant injurys. In this study, load characteristics of load limiters are optimized by the computer simulation with a MADYMO model for a frontal impact against the rigid wall at 56kph and then we suggest performance requirements. We derived optimum load characteristic from the results using four vehicle simulation models represented by the vehicle. Based on the results, we suggest the performance from the results of the second optimization using the simulation considering the design and the standardization. Finally, the performance requirements is verified by the sled tests including the load limiter device for the full vehicle condition.

Design and Verification of the Hardware Architecture for the Active Seat Belt Control System Compliant to ISO 26262 (ISO 26262에 부합한 능동형 안전벨트 제어 시스템의 하드웨어 아키텍처 설계 및 검증)

  • Lee, Jun Hyok;Koag, Hyun Chul;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2030-2036
    • /
    • 2016
  • This paper presents a hardware development procedure of the ASB(Active Seat Belt) control system to comply with ISO 26262. The ASIL(Automotive Safety Integrity Level) of an ASB system is determined through the HARA(Hazard Analysis and Risk Assessment) and the safety mechanism is applied to meet the reqired ASIL. The hardware architecture of the controller consists of a microcontroller, H-bridge circuits, passive components, and current sensors which are used for the input comparison. The required ASIL for the control systems is shown to be satisfied with the safety mechanism by calculation of the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric) for the design circuits.

A Development and Characteristics of Remote Emergency Stop Device for Conveyors (컨베이어용 리모트 비상정지장치 개발 및 특성)

  • Lee, Jun-Suk
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.14-19
    • /
    • 2011
  • Conveyors cause a high serious and fatal injuries in the industry. Every year people are hurt or killed as a result of accidents on conveyors. Most accidents occur during operation and maintenance when employees are working on moving, unguarded conveyors or when the conveyors starts unexpectedly. In 2008 there were 486 reported injures ranging from fatalities to injures. Of these 486 reported accidents, 8 were fatalities, 66.9%(325) of reported accidents occurred in manufacturing company and 43.8%(213) occurred at the belt conveyors. The objective of this study was to invent the remote emergency stop device because industrial accidents mainly occur at blind spots where usually do not have any safety guard or device rather than the normal working places. In principle, this new device will use with the existing safety system. Then, it will be powerful safety system for preventing injuries related with conveyors.

Correlation Study on Tire Belt Adhesion Properties and Durability Performance (타이어의 벨트 부착력과 내구성능 간의 상관성 연구)

  • Hong Seungjun;Lee Hoguen
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.804-808
    • /
    • 2005
  • A pneumatic tire is made up of many flexible filaments of high modulus cord of natural textile, synthetic polymer, glass fiber, or fine hard drawn steel embedded in and bonded to a matrix of low modulus polymetric material. Adhesion property of these materials is very important in tire durability safety because belt-leaving-belt tread separation reduces the ability of a driver to control a vehicle, whether or not the separation is accompanied by a loss of air. In this study adhesion test of carcass-belt-tread is conducted on material properties of 5 PCR tire model, which are on sale in domestic market and analyzed adhesion properties. For those tire models FMVSS 109 indoor high speed durability test is conducted to analyze the correlation between adhesion force and high speed performance of tires and found the correlation between the two test results.