• 제목/요약/키워드: Safe Driving System

검색결과 214건 처리시간 0.03초

터널 조명 제어장치의 성능개선 (Improvement of Lighting Control System for Tunnel)

  • 어익수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1964-1966
    • /
    • 2003
  • Lighting in the tunnel makes for safe driving of cars taking into account of change in perception arisen in the sight of drivers of cars entering into and passing tunnel, drivers' mental reaction and unique circumstances of a tunnel. There are many variables to satisfy safe driving in the tunnel. Since tunnels are mostly located in the mountainous area and illumination at the approach part differs largely depending on the surrounding circumstances, a standard different from that of common lighting is applied. An accidentin the tunnel, which involves same danger as in underground, may lead to a large mishap. Therefore, control by sensors inside and outside of tunnel ensures prevention of an accident through control of illumination at the approach part and inside of tunnel. It is very important in the aspect of saving energy since such control is available to reduce depreciation factor resulted from early excessive intensity of illumination.

  • PDF

A Study on Prediction of Traffic Volume Using Road Management Big Data

  • Sung, Hongki;Chong, Kyusoo
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.589-594
    • /
    • 2015
  • In reflection of road expansion and increasing use rates, interest has blossomed in predicting driving environment. In addition, a gigantic scale of big data is applied to almost every area around the world. Recently, technology development is being promoted in the area of road traffic particularly for traffic information service and analysis system in utilization of big data. This study examines actual cases of road management systems and road information analysis technologies, home and abroad. Based on the result, the limitations of existing technologies and road management systems are analyzed. In this study, a development direction and expected effort of the prediction of road information are presented. This study also examines regression analysis about relationship between guide name and traffic volume. According to the development of driving environment prediction platform, it will be possible to serve more reliable road information and also it will make safe and smart road infrastructures.

조향각-회전각 룩업테이블을 이용한 대칭형 각도센서 보상기를 가지는 안전한 적응형 전조등 제어기의 설계 (Safe Adaptive Headlight Controller with Symmetric Angle Sensor Compensator Using Steering-swivel Angle Lookup Table)

  • 윤지애;안중현;인멍디;조정훈;박대진
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.112-121
    • /
    • 2016
  • AFLS (Adaptive front lighting system) is being applied to improve safety in driving automotive at night. Safe embedded system design for controlling head-lamps is required to improve noise robust ECU hardware and software simultaneously by considering safety requirement of hardware-dependent software under severe environmental noise. In this paper, we propose an adaptive headlight controller with a newly-designed symmetric angle sensor compensator, especially based on the proposed steering-swivel angle lookup table to determine whether the current controlling target is safe. The proposed system includes an additional backup hardware to compare the system status and provides safe swivel-angle management using a controlling algorithm based on the pre-defined lookup table (LUT), which is a symmetric mapping relationship between the requested steering angle and expected swivel angle target. The implemented system model shows that the proposed architecture effectively detects abnormal situations and restores safe status of controlling the light-angle in AFLS operations under severe noisy environment.

자율 주행을 위한 심층 학습 기반 차선 인식 모델 분석 (Analysis of Deep Learning-Based Lane Detection Models for Autonomous Driving)

  • 이현종;윤의현;하정민;이재구
    • 대한임베디드공학회논문지
    • /
    • 제18권5호
    • /
    • pp.225-231
    • /
    • 2023
  • With the recent surge in the autonomous driving market, the significance of lane detection technology has escalated. Lane detection plays a pivotal role in autonomous driving systems by identifying lanes to ensure safe vehicle operation. Traditional lane detection models rely on engineers manually extracting lane features from predefined environments. However, real-world road conditions present diverse challenges, hampering the engineers' ability to extract adaptable lane features, resulting in limited performance. Consequently, recent research has focused on developing deep learning based lane detection models to extract lane features directly from data. In this paper, we classify lane detection models into four categories: cluster-based, curve-based, information propagation-based, and anchor-based methods. We conduct an extensive analysis of the strengths and weaknesses of each approach, evaluate the model's performance on an embedded board, and assess their practicality and effectiveness. Based on our findings, we propose future research directions and potential enhancements.

경량전철용 유도급전 시스템의 전자파 분석 연구 (A Study on the Electro-magnetic Wave of Inductive Power Transfer System for Light Railway Transit)

  • 박찬배;이병송;이형우
    • 전기학회논문지
    • /
    • 제61권8호
    • /
    • pp.1210-1215
    • /
    • 2012
  • Traction motors for driving and power conversion devices using semiconductor switch are equipped with a transportation systems such as an electrical railway system. Power conversion devices have the possibility of malfunction by external electromagnetic waves. As a result, these could affect the safe operation of the railway. Moreover, the electromagnetic waves above safe limits will be harmful to the passengers inside the railway vehicles or anyone working around the rail-track. For this reason, the importance and need about the reliability check and complement of electromagnetic waves generated from the IPT(Inductive Power Transfer) system have been suggested for the safe application of the IPT system to the railway system. In this study, prediction for the electromagnetic wave properties was conducted through FEM(Finite Element Method) analysis of 5kW-class IPT system design model. Next, the 5kW IPT system prototype was made and then the small-scaled railway vehicle was made to mount the IPT system and the energy management system. Finally, the electromagnetic waves generated from the real small-scaled IPT system were measured and analyzed, and then the reliability check of predictions by FEM analysis were carried out.

전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구 (A Study on Dynamic Characteristic for the Bi-modal Tram with All-Wheel-Steering System)

  • 이수호;문경호;전용호;박태원;이정식;김덕기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.99-108
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

  • PDF

전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구 (A Study on the Dynamic Characteristics of the Bi-modal Tram with All-Wheel-Steering System)

  • 이수호;문경호;전용호;이정식;김덕기;박태원
    • 한국철도학회논문집
    • /
    • 제10권4호
    • /
    • pp.444-450
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

고속버스 DTG 자료를 활용한 버스 위험운전 행태 분석 (Analysis of Dangerous Bus Driving Behavior Using Express Bus Digital Tacho Graph Data)

  • 김수재;주재홍;추상호;이향숙
    • 한국ITS학회 논문지
    • /
    • 제17권2호
    • /
    • pp.87-97
    • /
    • 2018
  • 많은 승객들이 이용하는 대중교통수단인 버스의 위험운전을 체계적으로 평가 및 진단하기 위한 시스템은 현재까지 매우 미흡한 상황이다. 본 연구는 실제 고속버스 운행기록장치(DTG, Digital Tacho Graph) 자료를 활용하여 버스 위험운전의 특성과 패턴에 대해 분석하였다. 위험운전 8개 유형에 대해 시간대별, 요일별, 날씨별 분포를 분석한 결과, 급가속(61.3%), 급좌우회전(20.1%), 급감속(15.1%) 유형이 대부분을 차지하였으며, 새벽시간대, 금요일, 맑은 날에 각각 위험운전이 더 많이 발생하는 패턴을 보였다. 이어서 통계분석을 통해 위험운전 유형별 상관성과 시간대별 발생건수의 차이를 규명하였으며, 위험운전의 정도에 따라 3개 그룹을 제시하였다. 본 연구의 결과는 향후 안전운전 교육기관에서 운전 시뮬레이터를 통한 신뢰성 있는 진단 및 교육을 수행하기 위한 참고자료로 활용될 수 있을 것이다.

노인 운전자의 공격적인 운전 상태 검출 기법 (A Method of Detecting the Aggressive Driving of Elderly Driver)

  • 고동우;강행봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.537-542
    • /
    • 2017
  • 공격적인 성향의 운전은 자동차 사고의 주요한 원인이 된다. 기존 연구에서는 공격적 성향의 운전을 검출하기 위해, 주로 청년을 대상으로 연구가 이뤄졌으며 기계학습의 순수한 Clustering 또는 Classification 기법을 통해 이뤄졌다. 그러나 노인들은 취약한 신체적 조건에 의해 젊은 운전자와는 다른 운전 강도를 가지고 있어 기존의 방식으로는 검출이 불가능 하며, 데이터를 보정하는 등의 새로운 방법이 필요하다. 그리하여, 본 연구에서는 기존의 클러스터링 기법(K-means, Expectation - maximization algorithm)에, 새롭게 제안하는 ECA(Enhanced Clustering method for Acceleration data)기법을 추가하여, 주행 차량에 위치한 스마트폰으로부터 수집된 가속도 데이터를 분석하고 공격적인 운전 형태를 검출해 낸다. ECA는 모든 피험자의 데이터에서 K-means와 EM을 통해 검출된 군집군의 데이터 중 높은 강도의 데이터를 선별하여, 특징을 스케일링한 값을 통해 모델링한다. 본 방식을 통해 기존의 연구의 순수한 클러스터링 방식과는 달리, 모든 청장년 및 노인 실험 참가자 개인들의 공격적인 운전 데이터가 검출되었으며, 클러스터링 기법간의 비교를 통해 K-means 기법이 보다 높은 검출 효율을 갖고 있음을 확인했다. 또한, K-means 방식을 검출한 공격적인 운전 데이터에서는 젊은 운전자가 노인운전자에 비해 1.29배의 높은 운전 강도를 가지고 있음을 발견했다. 이와 같이 본 연구에서 제안된 방식은 낮은 운전 강도를 갖고 있는 노인의 데이터에서 공격적인 운전을 검출 가능하게 되었으며, 특히. 제안된 방법은 노인 운전자를 위한 맞춤형 안전운전 시스템을 구축이 가능하며, 추후 다양한 연구을 통해 이상 운전 상태를 검출하고 조기 경보하는데 활용이 가능할 것이다.

안전주행을 위한 비전 기반의 차선변경보조시스템 개발 (Development of a Vision-based Lane Change Assistance System for Safe Driving)

  • 성준용;한민홍;노광현
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권5호
    • /
    • pp.329-336
    • /
    • 2006
  • 본 논문은 안전한 차선 변경을 위하여 측후방에서 접근하는 차량을 컴퓨터비전 알고리즘으로 탐지하여 운전자에게 알려주는 차선변경보조시스템에 대해 설명한다. 제안 시스템은 운전자가 차선변경을 시도하려 하면 영상 처리를 통하여 측후방 차량의 유무 및 움직임을 추적하여 차선 변경 가능 여부를 판단하여 운전자에게 알린다. 차선을 탐지 후 이를 기반으로 ROI(Region of Interest)을 설정하고, 이 영역내에서 광류 흐름 기법을 이용하여 접근하는 차량을 탐지한다. 제안된 알고리즘 및 시스템 검증을 위하여 실제 도로의 주행 영상을 사용하여 시험한 결과 91%의 차량 인식률을 보였고, 향후 상용화될 차선변경보조시스템에 적용 가능할 것이다.

  • PDF