• Title/Summary/Keyword: Sacred bell of the great king seongdeok

Search Result 4, Processing Time 0.021 seconds

An Equivalent Bell and Beat Period Control in the Sacred Bell of the Great King Seongdeok (성덕대왕신종의 등가 종과 맥놀이 주기 조절)

  • Lee, Joong-hyeok;Kim, Seock-hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.472-475
    • /
    • 2013
  • This study proposes an equivalent bell model for the Sacred Bell of the Great King Seongdeok An equivalent bell model bas the modal property of the real bell and it consists of an axi-symmetric bell body and a point mass, The bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell. Using the equivalent bell model. the beat period can be controlled by decreasing the thickness of local area. This study aims at showing a beat period control method for a large bell having the similar size to the Sacred Bell of the Great King Seongdeok.

  • PDF

Design of a Variable Resonator for the Sacred Bell of the Great King Seongdeok (성덕대왕신종을 위한 가변형 명동의 설계)

  • Kim, Seock-Hyun;Jeong, Won-Tae;Kang, Yun-June
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.288-297
    • /
    • 2012
  • This study proposes a design model of the variable type resonator which corrects the temperature variance according to the season, in order to maximize the resonance effect in the Sacred bell of the Great King Seongdeok. In the bell, the 1st natural frequency (64 Hz) and the 2nd natural frequency (168 Hz) are the most important partial tones. Resonance conditions of the two components are determined for the internal acoustic cavity system, which consists of bell body cavity, gap and the resonator. Acoustic frequency response characteristics of the internal cavity are determined by the boundary element analysis using SYSNOISE. As an external factor, temperature variance according to the season largely influences the resonance condition and the length of the resonator should be controlled to maximize the resonance effect. As a measure, this study proposes a design model of the variable type resonator for the Sacred Bell of the Great King Seongdeok, which can control the length at the belfry according to the season.

Resonance Condition of the Resonance Cavity and Air Gap in the Sacred Bell of the Great King Seongdeok (성덕대왕신종의 명동과 간극의 공명조건)

  • Kim, Seock-Hyun;Jeong, Won-Tae;Kang, Yun-June
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.223-230
    • /
    • 2011
  • Korean bell is hung with some air gap between the bell bottom and the ground. In addition, it has a peculiar acoustic element, so called resonance cavity below the bell. A proper design of the air gap and cavity size dramatically amplifies the bell sound by resonance effect. Bell interior cavity, air gap and resonance cavity consist of an acoustic cavity system. When the acoustic cavity frequency coincides with the natural frequency of the bell body, the frequency component is significantly amplified. On the Sacred Bell of the Great King Seongdeok, this study proposes a resonance condition of the cavity system considering air gap effect for the first time. With the exact dimension of the bell, boundary element analysis is performed using SYSNOISE. Finally, this study reveals how the temperature in season influences the resonance condition and proposes a concept of variable type resonance cavity. By using the variable type resonance cavity, the cavity size is controlled on site and exact resonance is available regardless of temperature difference in season.

Significance of Three-Dimensional Digital Documentation and Establishment of Monitoring Basic Data for the Sacred Bell of Great King Seongdeok (성덕대왕신종의 3차원 디지털 기록화 의미와 모니터링 기초자료 구축)

  • Jo, Younghoon;Song, Hyeongrok;Lee, Sungeun
    • Conservation Science in Museum
    • /
    • v.24
    • /
    • pp.55-74
    • /
    • 2020
  • The Sacred Bell of Great King Seongdeok is required digital precision recording of conservation conditions because of corrosion and partial abrasion of its patterns and inscriptions. Therefore, this study performed digital documentation of the bell using four types of scanning and unmanned aerial vehicle (UAV) photogrammetry technologies, and performed the various shape analyses through image processing. The modeling results of terrestrial laser scanning and UAV photogrammetry were merged and utilized as basic material for monitoring earthquake-induced structural deformation because these techniques can construct mutual spatial relationships between the bell and its tower. Additionally, precision scanning at a resolution four to nine times higher than that of the previous study provided highly valuable information, making it possible to visualize the patterns and inscriptions of the bell. Moreover, they are well-suited as basic data for identifying surface conservation conditions. To actively apply three-dimensional scanning results to the conservation of the original bell, the time and position of any changes in shape need to be established by further scans in the short-term. If no change in shape is detected by short-term monitoring, the monitoring should continue in medium- and long-term intervals.