• Title/Summary/Keyword: Saccharification

Search Result 372, Processing Time 0.026 seconds

Biological Pretreatment of Softwood Pinus densiflora by Three White Rot Fungi

  • Lee, Jae-Won;Gwak, Ki-Seob;Park, Jun-Yeong;Park, Mi-Jin;Choi, Don-Ha;Kwon, Mi;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.485-491
    • /
    • 2007
  • The effects of biological pretreatment on the Japanese red pine Pinus densiflora, was evaluated after exposure to three white rot fungi Ceriporia lacerata, Stereum hirsutum, and Polyporus brumalis. Change in chemical composition, structural modification, and their susceptibility to enzymatic saccharification in the degraded wood were analyzed. Of the three white rot fungi tested, S. hirsutum selectively degraded the lignin of this sortwood rather than the holocellulose component. After eight weeks of pretreatment with S. hirsutum, total weight loss was 10.7%, while lignin loss was the highest at 14.52% among the tested samples. However, holocellulose loss was lower at 7.81 % compared to those of C. lacerata and P. brumalis. Extracelluar enzymes from S. hirsutum showed higher activity of ligninase and lower activity of cellulase than those from other white rot fungi. Thus, total weight loss and changes in chemical composition of the Japanese red pine was well correlated with the enzyme activities related with lignin- and cellulose degradation in these fungi. Based on the data obtained from analysis of physical characterization of degraded wood by X-ray Diffractometry (XRD) and pore size distribution, S. hirsutum was considered as an effective potential fungus for biological pretreatment. In particular, the increase of available pore size of over 120 nm in pretreated wood powder with S. hirsutum made enzymes accessible for further enzymatic saccharification. When Japanese red pine chips treated with S. hirsutum were enzymatically saccharified using commercial enzymes (Cellulclast 1.5 L and Novozyme 188), sugar yield was greatly increased (21.01 %) compared to non-pre treated control samples, indicating that white rot fungus S. hirsutum provides an effective process in increasing sugar yield from woody biomass.

Comparison of the saccharide content of spent mushroom (Pleurotus ostreatus, Pleurotus eryngii, and Flammulina velutipes) substrates under various pretreatment conditions (전처리 방법에 따른 느타리, 큰느타리 및 팽이버섯 수확후 배지의 당함량 비교분석)

  • Kim, Jeong-Han;Lee, Yun-Hae;Chi, Jeong-Hyun;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.14 no.2
    • /
    • pp.70-74
    • /
    • 2016
  • A new method to utilize spent mushroom substrates (SMS) for ethanol production was investigated. Analysis of the chemical properties of SMS revealed that they were decomposed by the mushrooms during cultivation. In particular, the free sugar content in SMS was reduced to half of that in mushrooms. Of the tested SMS, the Pleurotus eryngii SMS was determined to be suitable for saccharification. Upon pretreatment with a 1% alkaline solution, Pleurotus eryngii SMS achieved 80.7% of its maximum saccharification ratio. The optimum pretreatment conditions for enzyme saccharification were 1% NaOH solution at $120^{\circ}$ for 60 min. Further studies are required to determine ethanol production using Pleurotus eryngii SMS.

Effects of Aqueous Ammonia Soaking to Chemical Compositional Changes and Enzymatic Saccharification of Yellow Poplar (Liriodendron tulipifera L.) (암모니아수 침지처리가 백합나무(Liriodendron tulipifera L.)의 화학적 조성 변화와 효소 당화에 미치는 영향)

  • Shin, Soo-Jeong;Yu, Ju-Hyun;Cho, Nam-Seok;Choi, In-Gyu;Kim, Mun-Sung;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • Effects of aqueous ammonia soaking treatments to yellow poplar (Liriodendron tulipifera L.) were investigated to focus on chemical compositional changes and enzymatic hydrolysis characteristics changes by this treatment. Treatment temperature and time were main variables. At 3 different levels of aqueous ammonia soaking temperature and time ($145^{\circ}C$ -1 h, $90^{\circ}C$ -16 h and $45^{\circ}C$ - 6 days), lower temperature and longer soaking time led to more xylan removal based on carbohydrate compositional analysis. However, at higher temperature treatment led to more enzymatic saccharification of cellulose to glucose by commercial cellulose mixtures (Celluclast 1.5L and Novozym 342 from Novozyme, Denmark). Cellulose hydrolysis was gradually increased with increasing enzymatic hydrolysis time but xylan hydrolysis was leveled out at early stage (less than 10 h) of enzymatic hydrolysis.

Evaluation of Operational Conditions and Power Consumption of a Bioattritor for Enzymatic Saccharification of Uncooked Starch (무증자 전분당화용 분쇄마찰매체 함유 효소반응기의 조작조건과 동력소모의 검토)

  • 이용현;박진서
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.349-357
    • /
    • 1989
  • Uncooked starch can be effectively saccharified in an enzyme reaction system containing attrition-milling media. To develope the high efficiency bioattritor, an agitated bead type bioreactor was constructed, and its effectiveness was evaluated. The optimal operation condition of bioattritor was found to be 300 g glass bead/L, 200 rpm, standard type impeller for 220 g/L of uncooked corn starch. The torque under the various operational conditions were also measured. The interrelation-ship between energy consumption for agitation of attrition-milling media and enhanced extent of saccharification of uncooked starch was evaluated, Power consumption was measured to be around 1.53 watt/L under the optimal operation condition. The attrition coupled enzyme reaction system is identified to tie a very excellent energy saying process for saccharification of uncooked starch, and seems to have a bright prospect of industrial application.

  • PDF

Simultaneous Saccharification and Extractive Fermentation for Lactic Acid Production (동시당화 및 추출발효에 의한 Lactic Acid 생산)

  • 공창범;우창호;최실호;윤현희
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.212-219
    • /
    • 1999
  • lactic acid production from cellulose by simultaneous saccharification and fermentation(SSF) was studied. The SSF using cellulase enzyme Cytolase CL and Lactobacillus delbrueckii was strongly inhibited by the end product(lactic acid). An ion-exchange resin(RA-400) was used for in-situ product removal during SSF. The sorption capacity of the resin was 200mg/g-resin. The simple SSF and the extractive SSF resulted in lactic acid concentrations of 30.4g/L and 32.0g/L, respectively, at the initial substrate concentration of 50g/L. A model was developed to simulate the extractive SSF. The lactic acid conversion for the initial substrate of 100g/L was estimated to be improved from 60% to 09% by in-situ product removal. The experimentally determined kinectic parameters were pH dependent, and fitted as empirical expressions to establish their values at different pH's. Lactic acid productivity was predicted to be maximum at pH 4.5-5.0.

  • PDF

Study on Optimizing, Pretreatment & Simultaneous Saccharification and Fermentation Process for High-efficiency Bioethanol (고효율 바이오 에탄올 생산을 위한 최적 전처리 공정 탐색 및 동시당화발효 공정 연구)

  • Choi, Gi-Wook;Han, Min-Hee;Kim, Yule
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.276-280
    • /
    • 2008
  • In this study, the productivity of bioethanol obtained from various domestic raw materials (barley, brown rice, corn and sweet potato) by simultaneous saccharification and fermentation (SSF) process was estimated. Also, optimal conditions of temperature, time and enzyme concentration in gelatinization and liquefaction process were investigated. As a result, corn showed high ethanol yield of 90.45% and sweet potato had a rapid fermentation time. Productivity of bioethanol increases in accordance with the starch value of raw materials except brown rice. Therefore, it is very important to understand the structure of starch. Further studieson the characteristics of raw materials are necessary to enhance the productivity of bioethanol.

Combined Aqueous Ammonia-Dilute Sulfuric Acid Pretreatment of Miscanthus for Bioethanol Production (바이오에탄올 제조를 위한 억새의 암모니아-희황산 복합 전처리)

  • Bark, Surn-Teh;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Ahn, Seung-Hyun;Cha, Young-Lok;Kim, Jung Kon;An, Gi Hong;Suh, Sae-Jung;Park, Don-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.179.1-179.1
    • /
    • 2011
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. The objective of this study was to evaluate the effect of combined aqueous ammonia-dilute sulfuric acid treatment on cellulosic biomass. Miscanthus was pretreated using aqueous ammonia and dilute sulfuric acid solution under high temperature and pressure conditions to be converted into bioethanol. Aqueous ammonia treatment was performed with 15 %(w/w) ammonia solution at $150^{\circ}C$ of reaction temperature and 20 minutes of reaction time. And then, dilute sulfuric acid treatment was performed with 1.0 %(w/w) sulfuric acid solution at $150^{\circ}C$ of reaction temperature and 10 minutes of reaction time. The compositional variations of this combined aqueous ammonia-dilute sulfuric acid treatment resulted in 68.0 % of cellulose recovery and 95.7 % of hemicellulose, 81.3 % of lignin, 89.1 % of ash removal respectively. The enzymatic digestibility of 90.5 % was recorded in the combined pretreated Miscanthus sample and it was 14.7 times higher than the untreated sample. The ethanol yield in the Simultaneous Saccharification and Fermentation was 90.4 % of maximum theoretical yield based on cellulose content of the combined pretreated sample and it was about 98 % compared to the ${\alpha}$-cellulose ethanol yield.

  • PDF

Lactic Acid Fermentation of Rice and Quality Improvement by Amylolytic Enzyme Treatment during Fermentation (쌀의 젖산발효 및 발효중 전분가수분해효소 처리에 의한 품질 향상)

  • Mok, Chul-Kyoon;Han, Jin-Suk;Kim, Young-Jin;Kim, Nam-Soo;Kwon, Dae-Young;Nam, Young-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.739-744
    • /
    • 1991
  • A palatable paste-type lactic fermented rice (LFR) was prepared by lactic acid fermentation after liquefaction and saccharification of cooked rice. A mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus (1 : 1) produced the LFR of the best quality. A great improvement in quality of the LFR was achieved by 0.02% each ${\alpha}-amylase$ and glucoamylase treatment during the fermentation (simultaneous saccharification and fermentation), which resulted from the increased sourness and sweetness and the decreased size of solid particles contained in the LFR. The resulted LFR was superior in quality. Physical and chemical properties of the LFR were evaluated.

  • PDF