• 제목/요약/키워드: SWR

검색결과 77건 처리시간 0.025초

고온초전도 마이크로스트립 안테나의 온도 종속 초고주파 특성 (Microwave Properties of High Tc Superconducting Microstrip Antenna with Temperature Dependence)

  • 정동철;최명호;강형곤;임성훈;한병성
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.124-128
    • /
    • 1999
  • We report microwave properties of high-T$_c$ superconducting (HTS) microstrip antennas without impedance matching circuits, where the impedance mismatching is obvious under the critical temperature (T$_c$). The superconducting thin films used in this report were YBa$_2Cu_3O_{7-x}$ (YBCO) films deposited on MgO substrates produced by pulse laser deposition (PLD) technique. At around T$_c$, 86 K the reflection coefficient rapidly drops, and the standing wave ratio (SWR) becomes almost unity, and the characteristic impedance based on the Smith chart is nearly 50 ${\Omega}$. The reflection coefficient and the SWR of the HTS microstrip antenna were - 62.52 dB and 1.0015, respectively, at the resonant frequency of 11.812 CHz at 86 K.

  • PDF

H-커플링 슬롯 광대역 이중편파 마이크로스트립 안테나 (Wideband Dual-polarized Microstrip Antenna with H-shaped Coupling Slot)

  • 김장욱;전주성
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.71-79
    • /
    • 2014
  • 본 논문에서는 H-형 커플링 슬롯을 가진 광대역 이중 편파 마이크로스트립 안테나를 제안하였다. 제안된 안테나는 통신사업자들이 경쟁적으로 공공장소에 구축하고 있는 hot-spot zone과 같은 제한된 장소에서 많은 통신 단말기가 동시에 사용되면 상호 간섭이나 다중경로 페이딩에 의한 전송품질의 열화 발생을 방지할 수 있다. 설계된 안테나는 2.7GHz 이하의 주파수 대역에서 33.98%의 임피던스 대역폭($SWR{\leq}2$)과 8.58 dBi (at 2.11 GHz)의 최대 이득을 갖는 것을 측정결과를 통하여 확인하였다. 제안된 안테나는 단순한 구조로 다중 주파수 대역을 수용할 수 있으며 다양한 상업적인 적용이 가능하도록 대량생산의 장점을 갖는다.

세라믹 소재의 흡음성능에 관한 실험적 연구 (An Experimental Study on the Absorption Performance of Ceramic Materials)

  • 송화영;서은성;김형태;이성민;이동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.163-167
    • /
    • 2009
  • In this study, the acoustic properties of ceramic sound absorbing materials with different thickness and bulk density were investigated in terms of characteristic impedance, propagation constant, and absorption coefficient. The well-known two-cavity method was used for evaluating those acoustic parameter values. Also, in order to validate the experimentally measured values, the results were compared with the results obtained from Chung and Blaser's transfer function method and SWR method. The experimentally measured values of normal absorption coefficients were generally agreed well with the corresponding values from the transfer function method and the SWR method. Based on the experimental results, the following conclusions could be made. The magnitude of the absorption coefficient and the frequency range of the maximum absorption coefficient were controllable by changing the thickness and bulk density of the sound absorbing materials.

  • PDF

트러스 벽면과 미세격자 트러스로 구성된 정육면체 단위모델의 강성 및 강도 개발 (Development of Effective Stiffness and Effective Strength for a Truss-Wall Rectangular model combined with Micro-Lattice Truss)

  • 최정호
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.133-143
    • /
    • 2016
  • The objective in here is to find the density, stiffness, and strength of truss-wall rectangular (TWR) model which is combined with lattice truss (MLT) inside space. The TWR unit-cell model is defined as a unit cell originated from a solid-wall rectangular (SWR) model and it has an empty space inside. Thus, the empty space inside of the TWR is filled with lattice truss model defined as TWR-MLT. The ideal solutions derived of TWR-MLT are based on TWR with MLT model and it has developed by Gibson-Ashby's theory. To validate the ideal solutions of the TWR-MLT, ABAQUS software is applied to predict the density, strength, and stiffness, and then each of them are compared with the Gibson-Ashby's ideal solution as a log-log scale. Applied material property is stainless steel 304 because of cost effectiveness and easy to get around. For the analysis, SWR and TWR-MLT models are 1mm, 2mm, and 3mm truss diameter separately within a fixed 20mm opening width. In conclusion, the relative Young's modulus and relative yield strength of the TWR-MLT unit model is reasonably matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, TWR-MLT model can be verified by advanced technologies such as 3D printing skills.t.

A Superconducting $Y_1Ba_2Cu_3O_{7-\delta}$ Square Spiral Microstrip Antenna

  • Jung, Sung-H.;Song, Ki-Y.
    • Progress in Superconductivity
    • /
    • 제2권1호
    • /
    • pp.51-55
    • /
    • 2000
  • A $Y_1Ba_2Cu_3O_{7-\delta}$ square spiral microstrip antenna (YBCO antenna) was epitaxially grown on a $LaAlO_3$ substrate by laser ablation. Also fabricated was a gold square spiral microstrip antenna (gold antenna) having the same structure as that of the YBCO antenna in order to compare the properties of both antennas. Both the YBCO antenna and the gold antenna were operated in Ku (12-18 GHz) band, and their properties such as the return loss, SWR, power gain, and radiation patterns were investigated at 77 K. The return loss below -10 dB was obtained in two frequency ranges, i.e., 14.05-14.90 GHz, and 16-18 GHz for the YBCO antenna at 77 K (YBCO superconducting antenna), and in the frequency range of 15.05-17.60 GHz for the gold antenna at 77 K. The SWR bandwidths are 0.85 GHz and 2 GHz for the YBCO superconducting antenna, and 2.55 GHz for the gold antenna at 77 K. The gain improvement of the superconducting YBCO antenna over the gold antenna at 77 K was about 10 dB in the frequency range of 16 GHz to 18 GHz. The radiation patterns show the YBCO superconducting antenna has the omni-directional property of a spiral antenna.

  • PDF

'H'형태 공진기를 이용한 축소화된 위성통신 기지국용 고온초전도 안테나에 관한 연구 (Study on the miniaturized HTS antenna using H-type resonators for satellite communication systems.)

  • 정동철;임성훈;최효상;황종선;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.559-562
    • /
    • 2004
  • The $high-T_c$ Superconducting(HTS) antenna which consists of "H" type resonator has the benefits for the miniaturization of antenna in comparison with the microstrip antenna of the similar dimension. To fabricate the "H" type antenna HTS $YBa_2Cu_3O_{7-x}$(YBCO) thin films were deposited on MgO substrates using rf-magnetron sputtering. Standard etching processes were performed for the patterning of the "H" type antenna. For comparison between normal conducting antennas and superconducting antennas, the gold antennas with the same dimension were also fabricated. An aperture coupling was used for impedance matching between $50\Omega$ feed line and HTS radiating patch. The diverse experimental results were reported in terms of the resonant frequency, the return loss and the characteristics impedance. The "H" type superconducting antenna showed the performance of 1.36 in SWR, 24 % in efficiency, and 14.6 dB in the return loss superior to the normal conducting counterpart.

  • PDF

전달행렬법에 의한 다중 다공판 흡음시스템의 흡음계수 예측 (Prediction of the Sound Absorption Coefficient for Multiple Perforated-Plate Sound Absorbing System by Transfer Matrix Method)

  • 허성춘;이동훈;권영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.653-658
    • /
    • 2001
  • In this study, a new practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. In order to validate the proposed method, the absorption coefficients calculated by transfer matrix method for single perforated plate were first compared with the absorption coefficients measured by SWR method according to different porosity, hole diameter, and thickness of the perforated plate. Based on the comparison results, transfer matrix method was further applied to double and triple perforated plates to evaluate the absorption coefficients. The experimental results showed that the absorption coefficients from transfer matrix method generally agreed well with the corresponding absorption coefficients from SWR method. However, due to the limitations of the impedance model used in this study, the measured values were differed with the calculated values for small porosity, hole diameter, and thickness in size of the perforated plate indicating the need of impedance model development for multiple perforated-plate sound absorbing system covering wide ranges of porosity, hole diameter, and thickness of the perforated plate.

  • PDF

금속와이어 흡음재의 음향특성 (Acoustical Properties of Steel-Wire Sound Absorbing Materials)

  • 이승;박상준;이동훈;배재근;김민배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1341-1346
    • /
    • 2001
  • In this study, the acoustic properties of steel-wire sound absorbing materials with different thickness and bulk density were investigated in terms of characteristic impedance, propagation constant, and absorption coefficient. The well-known two-cavity method was used for evaluating those acoustic parameter values in experiments. Also, in order to validate the experimentally measured values, the results were compared with the results obtained from Chung and Blaser's transfer function method and SWR method. The experimentally measured values of normal absorption coefficients were generally agreed well with the corresponding values from the transfer function method and the SWR method. Based on the experimental results, the following conclusions could be made. The magnitude of the absorption coefficient and the frequency range of the maximum absorption coefficient were controllable by changing the thickness and bulk density of the sound absorbing materials. Also, the magnitude of the absorption coefficient depended on the characteristic impedance and the propagation constant. As large as the air cavity depth at the rear side of the steel-wire sound absorbing materials, the maximum magnitude of the absorption coefficient occurred at the lower frequency ranges.

  • PDF