• Title/Summary/Keyword: SWR

Search Result 77, Processing Time 0.055 seconds

Microwave Properties of High Tc Superconducting Microstrip Antenna with Temperature Dependence (고온초전도 마이크로스트립 안테나의 온도 종속 초고주파 특성)

  • Chung, Dong-Chul;Choi, Myung-Ho;Kang, Hyeong-Gon;Lim, Sung-Hun;Han, Byoung-Sung
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.124-128
    • /
    • 1999
  • We report microwave properties of high-T$_c$ superconducting (HTS) microstrip antennas without impedance matching circuits, where the impedance mismatching is obvious under the critical temperature (T$_c$). The superconducting thin films used in this report were YBa$_2Cu_3O_{7-x}$ (YBCO) films deposited on MgO substrates produced by pulse laser deposition (PLD) technique. At around T$_c$, 86 K the reflection coefficient rapidly drops, and the standing wave ratio (SWR) becomes almost unity, and the characteristic impedance based on the Smith chart is nearly 50 ${\Omega}$. The reflection coefficient and the SWR of the HTS microstrip antenna were - 62.52 dB and 1.0015, respectively, at the resonant frequency of 11.812 CHz at 86 K.

  • PDF

Wideband Dual-polarized Microstrip Antenna with H-shaped Coupling Slot (H-커플링 슬롯 광대역 이중편파 마이크로스트립 안테나)

  • Kim, Jang Wook;Jeon, Joo Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.71-79
    • /
    • 2014
  • This paper investigates wideband dual-polarized microstrip antenna with H-shaped coupling slot. These types of antennas are used to prevent deterioration of transmission quality caused by terminal interference or multipath fading, which usually occur when many terminals are used in limited space such as hot-spot zones. The experimental results show that the impedance bandwidth ($SWR{\leq}2$) of 33.98% and the peak gain of 8.58 dBi (at 2.11 GHz) were obtained by the frequency band under 2.7 GHz. The proposed antenna is designed originally for multiple service bands with simple structure and easily be mass-produced for various commercial applications.

An Experimental Study on the Absorption Performance of Ceramic Materials (세라믹 소재의 흡음성능에 관한 실험적 연구)

  • Song, Hwa-Young;Seo, Eun-Sung;Kim, Hyung-Tae;Lee, Sung-Min;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.163-167
    • /
    • 2009
  • In this study, the acoustic properties of ceramic sound absorbing materials with different thickness and bulk density were investigated in terms of characteristic impedance, propagation constant, and absorption coefficient. The well-known two-cavity method was used for evaluating those acoustic parameter values. Also, in order to validate the experimentally measured values, the results were compared with the results obtained from Chung and Blaser's transfer function method and SWR method. The experimentally measured values of normal absorption coefficients were generally agreed well with the corresponding values from the transfer function method and the SWR method. Based on the experimental results, the following conclusions could be made. The magnitude of the absorption coefficient and the frequency range of the maximum absorption coefficient were controllable by changing the thickness and bulk density of the sound absorbing materials.

  • PDF

Development of Effective Stiffness and Effective Strength for a Truss-Wall Rectangular model combined with Micro-Lattice Truss (트러스 벽면과 미세격자 트러스로 구성된 정육면체 단위모델의 강성 및 강도 개발)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.133-143
    • /
    • 2016
  • The objective in here is to find the density, stiffness, and strength of truss-wall rectangular (TWR) model which is combined with lattice truss (MLT) inside space. The TWR unit-cell model is defined as a unit cell originated from a solid-wall rectangular (SWR) model and it has an empty space inside. Thus, the empty space inside of the TWR is filled with lattice truss model defined as TWR-MLT. The ideal solutions derived of TWR-MLT are based on TWR with MLT model and it has developed by Gibson-Ashby's theory. To validate the ideal solutions of the TWR-MLT, ABAQUS software is applied to predict the density, strength, and stiffness, and then each of them are compared with the Gibson-Ashby's ideal solution as a log-log scale. Applied material property is stainless steel 304 because of cost effectiveness and easy to get around. For the analysis, SWR and TWR-MLT models are 1mm, 2mm, and 3mm truss diameter separately within a fixed 20mm opening width. In conclusion, the relative Young's modulus and relative yield strength of the TWR-MLT unit model is reasonably matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, TWR-MLT model can be verified by advanced technologies such as 3D printing skills.t.

A Superconducting $Y_1Ba_2Cu_3O_{7-\delta}$ Square Spiral Microstrip Antenna

  • Jung, Sung-H.;Song, Ki-Y.
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.51-55
    • /
    • 2000
  • A $Y_1Ba_2Cu_3O_{7-\delta}$ square spiral microstrip antenna (YBCO antenna) was epitaxially grown on a $LaAlO_3$ substrate by laser ablation. Also fabricated was a gold square spiral microstrip antenna (gold antenna) having the same structure as that of the YBCO antenna in order to compare the properties of both antennas. Both the YBCO antenna and the gold antenna were operated in Ku (12-18 GHz) band, and their properties such as the return loss, SWR, power gain, and radiation patterns were investigated at 77 K. The return loss below -10 dB was obtained in two frequency ranges, i.e., 14.05-14.90 GHz, and 16-18 GHz for the YBCO antenna at 77 K (YBCO superconducting antenna), and in the frequency range of 15.05-17.60 GHz for the gold antenna at 77 K. The SWR bandwidths are 0.85 GHz and 2 GHz for the YBCO superconducting antenna, and 2.55 GHz for the gold antenna at 77 K. The gain improvement of the superconducting YBCO antenna over the gold antenna at 77 K was about 10 dB in the frequency range of 16 GHz to 18 GHz. The radiation patterns show the YBCO superconducting antenna has the omni-directional property of a spiral antenna.

  • PDF

Study on the miniaturized HTS antenna using H-type resonators for satellite communication systems. ('H'형태 공진기를 이용한 축소화된 위성통신 기지국용 고온초전도 안테나에 관한 연구)

  • Chung, D.C.;Lim, S.H.;Choi, H.S.;Hwang, J.S.;Han, B.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.559-562
    • /
    • 2004
  • The $high-T_c$ Superconducting(HTS) antenna which consists of "H" type resonator has the benefits for the miniaturization of antenna in comparison with the microstrip antenna of the similar dimension. To fabricate the "H" type antenna HTS $YBa_2Cu_3O_{7-x}$(YBCO) thin films were deposited on MgO substrates using rf-magnetron sputtering. Standard etching processes were performed for the patterning of the "H" type antenna. For comparison between normal conducting antennas and superconducting antennas, the gold antennas with the same dimension were also fabricated. An aperture coupling was used for impedance matching between $50\Omega$ feed line and HTS radiating patch. The diverse experimental results were reported in terms of the resonant frequency, the return loss and the characteristics impedance. The "H" type superconducting antenna showed the performance of 1.36 in SWR, 24 % in efficiency, and 14.6 dB in the return loss superior to the normal conducting counterpart.

  • PDF

Prediction of the Sound Absorption Coefficient for Multiple Perforated-Plate Sound Absorbing System by Transfer Matrix Method (전달행렬법에 의한 다중 다공판 흡음시스템의 흡음계수 예측)

  • 허성춘;이동훈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.653-658
    • /
    • 2001
  • In this study, a new practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. In order to validate the proposed method, the absorption coefficients calculated by transfer matrix method for single perforated plate were first compared with the absorption coefficients measured by SWR method according to different porosity, hole diameter, and thickness of the perforated plate. Based on the comparison results, transfer matrix method was further applied to double and triple perforated plates to evaluate the absorption coefficients. The experimental results showed that the absorption coefficients from transfer matrix method generally agreed well with the corresponding absorption coefficients from SWR method. However, due to the limitations of the impedance model used in this study, the measured values were differed with the calculated values for small porosity, hole diameter, and thickness in size of the perforated plate indicating the need of impedance model development for multiple perforated-plate sound absorbing system covering wide ranges of porosity, hole diameter, and thickness of the perforated plate.

  • PDF

Acoustical Properties of Steel-Wire Sound Absorbing Materials (금속와이어 흡음재의 음향특성)

  • Lee, Seung;Park, Sang-Jun;Lee, Dong-Hoon;Phae, Chae-Gun;Kim, Min-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1341-1346
    • /
    • 2001
  • In this study, the acoustic properties of steel-wire sound absorbing materials with different thickness and bulk density were investigated in terms of characteristic impedance, propagation constant, and absorption coefficient. The well-known two-cavity method was used for evaluating those acoustic parameter values in experiments. Also, in order to validate the experimentally measured values, the results were compared with the results obtained from Chung and Blaser's transfer function method and SWR method. The experimentally measured values of normal absorption coefficients were generally agreed well with the corresponding values from the transfer function method and the SWR method. Based on the experimental results, the following conclusions could be made. The magnitude of the absorption coefficient and the frequency range of the maximum absorption coefficient were controllable by changing the thickness and bulk density of the sound absorbing materials. Also, the magnitude of the absorption coefficient depended on the characteristic impedance and the propagation constant. As large as the air cavity depth at the rear side of the steel-wire sound absorbing materials, the maximum magnitude of the absorption coefficient occurred at the lower frequency ranges.

  • PDF