• Title/Summary/Keyword: SWAT Model

Search Result 491, Processing Time 0.028 seconds

The Relationship between Parameters of the SWAT Model and the Geomorphological Characteristics of a Watershed (SWAT 모형의 매개변수와 유역의 지형학적 특성 관계)

  • Lee, Woong Hee;Lee, Ji Haeng;Park, Ji Hun;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • The correlation relationships and their corresponding equations between the geomorphological parameters and the Soil Water Assessment Tool (SWAT) model parameters by Sequential Uncertainty Fitting - version 2 (SUFI-2) algorithm of SWAT Calibration and Uncertainty Programs (SWAT-CUP) were developed at the Seom-river experimental watershed. The parameters of the SWAT model at the Soksa-river experimental watershed were estimated by the developed equations. The SWAT model parameters were estimated by SUFI-2 algorithm of SWAT-CUP with rainfall-runoff data from the Soksa-river experimental watershed from 2000 to 2007. Rainfall-runoff simulation of the SWAT model was carried out at the Soksa-river experimental watershed from 2000 to 2007 for the applicability of the estimated parameters by the developed equations. The root mean square errors (RMSE) between the observed and the simulated rainfall-runoffs using the estimated parameters by developed equations of correlation analysis and the optimum parameters by SUFI-2 of SWAT-CUP were $1.09m^3/s$ and $0.93m^3/s$ respectively at the Soksa-river experimental watershed from 2000 to 2007. Therefore, it is considered that the parameter estimation of the SWAT model by the geomorphological characteristics parameters has applicability.

Improvement of Channel Water Quality Module in SWAT (SWAT 모형의 하도 수질 모듈의 개선)

  • Kim, Nam-Won;Shin, Ah-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.902-909
    • /
    • 2009
  • With various reservoirs, dams and reduction of water velocity in downstream, rivers in Korea often have characteristics of accumulation of pollutants. Therefore, the main focus of water quality modeling in Korea needs to be shifted from DO to algae and organic matter. Moreover the structures of water quality models should be modified to have capability of simulating BOD which is a key factor of total water pollution load management in Korea as laboratory experiment BOD (Bottle $BOD_5$). In the SWAT model which is one of the widely used water quality models in Korea, the channel water quality module is using main algorithm of the QUAL2E model which has limitations in simulating algae, organic matter and Bottle BOD5 etc. To overcome this hindrance, in this study, the improved channel water quality module of the SWAT model (Q-SWAT) was proposed by linking the algorithms of the QUAL-NIER model which was developed based on the QUAL2E model to the SWAT model. The algorithms estimating the increase of internal organic matter by fractionization algal metabolism process and calculating Bottle $BOD_5$ were added and the results of proposed model were compared to those of the original SWAT model. The results of comparison test are showing that more accurate BOD values can be obtained with the Q-SWAT model and it is anticipated that the Q-SWAT model can be used as an effective tool of decision support through the water quality simulation and long term pollution source analysis.

Flow Calibration and Validation of Daechung Lake Watershed, Korea Using SWAT-CUP (SWAT-CUP을 이용한 대청호 유역 장기 유출 유량 보정 및 검증)

  • Lee, Eun-Hyoung;Seo, Dong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.9
    • /
    • pp.711-720
    • /
    • 2011
  • SWAT (Soil and Water Assessment Tool) model was calibrated for the flow rate of the Deachung lake with a large area of 3108.29 $km^2$. Application of SWAT model requires significant number of input data and is prone to result in uncertainties due to errors in input data, model structure and model parameters. The SUFI-2 (Sequential Uncertainty Fitting Ver. 2) program and GLUE (Generalized Likelihood Uncertainty Estimation) program in SWAT-CUP (SWAT-Calibration and Uncertainty Program) are used to select the best parameters for SWAT model. Optimal combination of parameter values was determined through 2,000 iterative SWAT model runs. The Nash-Sutcliffe values and $R^2$ values were 0.87 and 0.89 respectively indicating both methods show good agreements with observed data successfully. RMSE and MSE values also showed similar results for both programs. It seems the SWAT-CUP has a great practical appeal for parameter optimization especially for large basin area and it also can be used for less experienced SWAT model users.

SIMULATION OF DAILY RUNOFF AND SENSITIVITY ANALYSIS WITH SOIL AND WATER ASSESSMENT TOOL

  • Lee, Do-Hun;Kim, Nam-Won;Kim, In-Ho
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.133-146
    • /
    • 2004
  • Soil and water assessment tool (SWAT) was simulated based on the default parameters and a priori soil parameter estimation method in Bocheong watershed of Korea. The performance of the model was tested against the measured daily runoff data for 5 years between 1993 and 1997. The sensitivity analysis of SWAT model parameters was conducted to identify the most sensitive model parameters affecting the model output. The results of SWAT simulation indicate that the overall performance of SWAT in calculating daily runoff is reasonably acceptable. However, there is a problem in estimating the low flow components of streamflow since the low flow components simulated by SWAT are significantly different from the measured low flow. The sensitivity analysis with SWAT points out that soil related parameters are the most sensitive parameters affecting surface and ground water balance components and groundwater flow related parameters exhibit negligible sensitivity.

  • PDF

Estimation of Runoff Curve Number for Ungaged Watershed using SWAT Model (SWAT을 이용한 미계측 유역의 유출곡선지수 산정)

  • Lee, Jin-Won;Kim, Nam-Won;Lee, Jeong-Woo;Seo, Byung-Ha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.11-16
    • /
    • 2009
  • This study is to suggest the SWAT model as inputs for the estimation of CN (Curve number) if we do not have hourly rainfall and runoff data in the ungaged watershed. The daily CNs were estimated by using SWAT model for Chungju dam watershed and the CNs by hourly rainfall and runoff data in the same period with daily CN estimation were also estimated. Then the daily and hourly CNs were compared each other. The CNs by SWAT model were larger than the actual CNs. 7.4% larger in AMC-I, 1.2% in AMC-II, and 6.3% in AMC-III respectively. If we consider various uncertainties in the estimation of CN, the error of 6.8% could be acceptable for the application in the field.

Sreamflow, Nutirnets loading estimation for KEUMGANG estrury using SWAT2000 model (SWAT2000 모형을 이용한 금강하구호의 유출량 및 영양염류 부하량 산정)

  • Moon, Jong-Pil;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.496-501
    • /
    • 2005
  • SWAT2000 model directly estimate the loading of water, and nutrients from land areas in a watershed. it allows to add nutrient loading from the point sourece like a sewage treatment plant and it also has a GIS interface which can easily see the spatial relationship between subbasins. For better assessment of nutrients loading to KEUMGANG estuary, SWAT2000 model applied to KEUMGANG estuary watershed. Model calibration and verification was firstly poerformed at Gongju site duing the period $1999{\sim}2003$. $R^2$ value was 0.96 for streamflow, 0.94 for T-N load and 0.52 for T-P load. The accuracy of the model at Gongju site suggest that the SWAT2000 can be available to estimate streamflow, Nutrients loading to the KEUMGANG estuary.

  • PDF

Evaluation of Evapotranspiration and Soil Moisture of SWAT Simulation for Mixed Forest in the Seolmacheon Catchment (설마천유역 혼효림에서 실측된 증발산과 토양수분을 이용한 SWAT모형의 적용성 평가)

  • Joh, Hyung-Kyung;Lee, Ji-Wan;Shin, Hyung-Jin;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.289-297
    • /
    • 2010
  • Common practice of Soil Water Assessment Tool (SWAT) model validation is to use a single variable (i.e., streamlfow) to calibrate SWAT model due to the paucity of actual hydrological measurement data in Korea. This approach, however, often causes errors in the simulated results because of numerous sources of uncertainty and complexity of SWAT model. We employed multi-variables (i.e., streamflow, evapotranspiration, and soil moisture), which were measured at mixed forest in Seolmacheon catchment ($8.54\;km^2$), in order to assess the performance and reduce the uncertainties of SWAT model output. Meteorological and surface topographical data of the catchment were obtained as basic input variables and SWAT model was calibrated using daily data of streamflow (Jan. - Dec.), evapotranspiration (Sep. - Dec.), and soil moisture (Jun. - Dec.) collected in 2007. The model performance was assessed by comparing its results with the observation (i.e., streamflow of 2003 to 2008 and evapotranspiration and soil moisture of 2008). When the multi-variable measurements were used to calibrate the SWAT model, the model results showed better agreement with the measurements compared to those using a single variable measurement by showing increases in coefficient of determination ($R^2$) from 0.72 to 0.76 for streamflow, from 0.49 to 0.59 for soil moisture, and from 0.52 to 0.59 for evapotranspiration. The findings highlight the importance of reliable and accurate collective observation data for improving performance of SWAT model and promote its facilitation for estimating more realistic hydrological cycles at catchment scale.

Evaluation of the Tank Model Optimized Parameter for Watershed Modeling (유역 유출량 추정을 위한 TANK 모형의 매개변수 최적화에 따른 적용성 평가)

  • Kim, Kye Ung;Song, Jung Hun;Ahn, Jihyun;Park, Jihoon;Jun, Sang Min;Song, Inhong;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.9-19
    • /
    • 2014
  • The objective of this study was to evaluate of the Tank model in simulating runoff discharge from rural watershed in comparison to the SWAT (Soil and Water Assessment Tool) model. The model parameters of SWAT was calibrated by the shuffled complex evolution-university Arizona (SCE-UA) method while Tank model was calibrated by genetic algorithm (GA) and validated. Four dam watersheds were selected as the study areas. Hydrological data of the Water Management Information System (WAMIS) and geological data were used as an input data for the model simulation. Runoff data were used for the model calibration and validation. The determination coefficient ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency index (NSE) were used to evaluate the model performances. The result indicated that both SWAT model and Tank model simulated runoff reasonably during calibration and validation period. For annual runoff, the Tank model tended to overestimate, especially for small runoff (< 0.2 mm) whereas SWAT model underestimate runoff as compared to observed data. The statistics indicated that the Tank model simulated runoff more accurately than the SWAT model. Therefore the Tank model could be a good tool for runoff simulation considering its ease of use.

The Simulation of Nutrients using SWAT Model and its Application to Estimate Delivery Ratio (SWAT 모형을 이용한 영양물질 모의 및 유달율 추정에의 적용)

  • Choi, Daegyu;Shin, Hyun Suk;Yoon, Young Sam;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.375-385
    • /
    • 2009
  • The estimation of delivery ratio is a essential part of Korean Total Maximum Daily Loads (TMDL) procedure which needs a number of observed stream flow and pollutants data. If observed data were not sufficient, researchers have to find other alternatives. One of them is to make indirect data by using watershed models, such as Soil and Water Assessment Tool (SWAT) and Hydrological Simulation Program - FORTRAN (HSPF) and so on. In this study, indirect daily data was made by using SWAT model. To build the Byongseong-SWAT model accurately, crop cultures are reflected by handling the MGT.file in SWAT model. Especially, mass of manure and schedule of crop culture are inputted through investigating domestic research papers as well as fieldwork. After calibrating SWAT model in comparison with the 22-years flow and pollutants observed outlet data, the delivery ratio of Byongseong watershed is calculated by using daily simulated data during 2004-2007. Empirical equations for delivery ratio through multi-regression analysis are developed by using meteorological and physical factors such as flow, watershed area, stream length, catchment slope, curve number (CN) and subbasin's pollutant discharge loads.

The Development of Fully Coupled SWAT-MODFLOW Model (II) Evaluation of Model (완전 연동형 SWAT-MODFLOW 결합모형 (II) 모형의 평가)

  • Kim, Nam-Won;Chung, Il-Moon;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.509-515
    • /
    • 2004
  • In this study, comprehensive evaluation on the fully coupled SWAT-MODFLOW model is performed. Since combined model can consider the spatially varied daily recharge rate, groundwater modeling would be greatly enhanced. Also, combined model has been able to generate the distribution of groundwater heads with time, surface-subsurface flow modeling would be greatly advanced. River-aquifer interaction is well established in the combined model considering two-way interactions. Consequently, the reliability of groundwater discharge and total runoff of watershed would be greatly enhanced when combined model is used.