• 제목/요약/키워드: SWAT (soil and water assessment tool)

검색결과 282건 처리시간 0.032초

골지천 유역의 최적관리기법 적용에 따른 수질개선효과 분석 (Application and Effectiveness Analysis of SWAT Filter Strip in Golji Watershed)

  • 박윤식;권재혁
    • 한국환경농학회지
    • /
    • 제33권1호
    • /
    • pp.30-36
    • /
    • 2014
  • BACKGROUND: Best management practices are often implemented to control nonpoint source pollutants. Best management practices need to be simulated and analyzed for effective Best management practices implementations. Filter strip is one of effective Best management practices in agricultural areas. METHODS AND RESULTS: Soil and Water Assessment Tool model was selected to explore the effectiveness of filter strip to control total phosphorous in Golji watershed. Soil and Water Assessment Tool model was calibrated for flow and total phosphorous by Sequential Uncertainty Fittin ver.2 algorithm provided in Soil and Water Assessment Tool-Calibration and Uncertainty Procedures. Three scenarios defined by filter strip width were applied. The filter strip width of 5 m was able to reduce the most amount of total phosphorous. In other words, the total phosphorous reduction by filter strip of 5 m was 28.0%, while the reduction was 17.5% by filter strip of 1 m. However, the reduction per unit filter strip width were 17.4%, 8.0%, and 4.5% for 1 m, 3 m, and 5 m of filter strips, respectively. CONCLUSION: Best management practices need to be simulated and analyzed so that the BMP scenario can be cost-effective. A large size of BMP might be able to control large amount of pollutants, however it would not be indicated as a cost-effective strategy.

THE CORRELATION ANALYSIS BETWEEN SWAT PREDICTED SOIL MOISTURE AND MODIS NDVI

  • Hong, Woo-Yong;Park, Min-Ji;Park, Jong-Yoon;Kim, Seong-Joon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.204-207
    • /
    • 2008
  • The purpose of this study is to identify how much the MODIS NDVI (Normalized Difference Vegetation Index) can explain the soil moisture simulated from SWAT (Soil and Water Assessment Tool) continuous hydrological model. For the application, ChungjuDam watershed (6,661.3 $km^2$) was adopted which covers land uses of 82.2 % forest, 10.3 % paddy field, and 1.8 % upland crop respectively. For the preparation of spatial soil moisture distribution, the SWAT model was calibrated and verified at two locations (watershed outlet and Yeongwol water level gauging station) of the watershed using daily streamflow data of 7 years (2000-2006). The average Nash and Sutcliffe model efficiencies for the verification at two locations were 0.83 and 0.91 respectively. The 16 days spatial correlation between MODIS NDVI and SWAT soil moisture were evaluated especially during the NDVI increasing periods for forest areas.

  • PDF

토지피복도 정확도에 따른 SWAT 예측 오류 평가 (Evaluation of SWAT Prediction Error according to Accuracy of Land Cover Map)

  • 허성구;김기성;김남원;안재훈;박상헌;유동선;최중대;임경재
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.690-700
    • /
    • 2008
  • The Soil and Water Assessment Tool (SWAT) model users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. With newly prepared landcover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

SWAT 모형과 TOPSIS 기법을 이용한 우리나라 물이용 취약성 평가 (Parameteric Assessment of Water Use Vulnerability of South Korea using SWAT model and TOPSIS)

  • 원광재;성장현;정은성
    • 한국수자원학회논문집
    • /
    • 제48권8호
    • /
    • pp.647-657
    • /
    • 2015
  • 본 연구는 국내 12개수계인 한강, 안성천, 금강, 삽교천, 영산강, 섬진강, 탐진강, 만경강, 동진강, 낙동강, 태화강, 형산강 유역에 대한 물이용 취약성 평가를 실시하였다. SWAT(Soil and Water Assessment Tool) 모형을 이용하여 국내 12개 수계의 연유출량을 도출하였고, 각 유역별 면적 및 인구당 유출량을 비교하였다. 취약성 평가를 위해 18개 지표로 구성하였고, 물이용의 수요, 손실 및 공급의 측면으로 구분하였다. 이때의 가중치는 객관적 가중치의 적용을 위해 엔트로피(Entropy)방법을 사용하였고 정량적인 물이용 취약성 평가를 위해 다기준 의사결정기법 중 하나인 TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution) 기법을 적용하였다. 그 결과, 형산강의 물이용이 가장 취약하였고, 삽교천, 동진강, 섬진강, 안성천, 만경강, 낙동강, 탐진강, 영산강, 금강, 태화강, 한강 순이었다. 본 연구 결과는 향후 기후변화 취약성 평가를 위한 지표 개발에 이용할 수 있겠다.

SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가 (Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch)

  • 허성구;김남원;박윤식;김종건;김성준;안재훈;김기성;임경재
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가 (Sensitivity Analysis of Climate Factors on Runoff and Soil Losses in Daecheong Reservoir Watershed using SWAT)

  • 예령;정세웅;이흥수;윤성완;정희영
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.7-17
    • /
    • 2009
  • Soil and Water Assessment Tool (SWAT) was used to assess the impact of potential future climate change on the water cycle and soil loss of the Daecheong reservoir watershed. A sensitivity analysis using influence coefficient method was conducted for two selected hydrological input parameters and three selected sediment input parameters to identify the most to the least sensitive parameters. A further detailed sensitivity analysis was performed for the parameters: Manning coefficient for channel (Cn), evaporation (ESCO), and sediment concentration in lateral (LAT_SED), support practice factor (USLA_P). Calibration and verification of SWAT were performed on monthly basis for 1993~2006 and 1977~1991, respectively. The model efficiency index (EI) and coefficient of determination ($R^2$) computed for the monthly comparisons of runoffs were 0.78 and 0.76 for the calibration period, and 0.58 and 0.65 for the verification period. The results showed that the hydrological cycle in the watershed is very sensitive to climate factors. A doubling of atmospheric $CO_2$ concentrations was predicted to result in an average annual flow increase of 27.9% and annual sediment yield increase of 23.3%. Essentially linear impacts were predicted between two precipitation change scenarios of -20, and 20%, which resulted in average annual flow and sediment yield changes at Okcheon of -53.8%, 63.0% and -55.3%, 65.8%, respectively. An average annual flow increase of 46.3% and annual sediment yield increase of 36.4% was estimated for a constant humidity increase 5%. An average annual flow decrease of 9.6% and annual sediment yield increase of 216.4% was estimated for a constant temperature increase $4^{\circ}C$.

실측 경사장 및 경사도를 고려한 양구 해안면 유역의 유사량 평가 (Evaluation of Sediment Yield using Area-weighted Measured Slope and Slope Length at HeaAn Myeon Watershed)

  • 유동선;김기성;장원석;전만식;양재의;김성철;안재훈;임경재
    • 한국물환경학회지
    • /
    • 제24권5호
    • /
    • pp.569-580
    • /
    • 2008
  • In this study, area-weighted slope and slope length module, considering measured field slope and slope length of the agricultural fields within the subwatershed, was developed using the ArcView Avenue programming to reflect the field topography of the Soil and Water Assessment Tool (SWAT) HRU in simulating the hydrology and water quality. Flow and sediment yield estimated values of the SWAT were compared with and without applying area-weighted slope and slope length module, developed in this study. There was 103% increases in estimated sediment with area-weighted slope and slope length module for the study watershed. The soil erosion and sediment yield from only agricultural field in Hae-an watershed was also assessed. There are 111% increase in estimated soil erosion and 112% increase in estimated sediment by applying area-weighted slope and slope length module. This study shows that the area-weighted slope and slope length module needs to be utilized in estimating the HRU field slope and slope length for accurate estimation of soil erosion and nonponit source pollutant modeling with the SWAT although it is not feasible to measure topographic information for every agricultural fields within the watershed. The area-weighted slope and slope length module can be used in identifying soil erosion hot spot areas for developing cost effective and efficient soil erosion management practices.

SWAT모형과 MODIS위성영상을 이용한 소양강댐 유역의 토양수분 평가 (Assessment of Soil Moisture for a Soyanggang Dam Watershed using SWAT and MODIS Satellite Image)

  • 박근애;홍우용;정인균;이미선;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1466-1470
    • /
    • 2010
  • 토양수분은 지표의 다양한 과정을 통제하는 중요한 수문학적 변수며 이에 신뢰할 수 있는 토양수분의 정보를 습득하는 것은 매우 중요하다. 그러나 정확한 토양수분의 실측자료는 그 설치비용과 인력부족으로 매우 빈약하여 이를 대체할 만한 정보를 획득하기 위한 연구 또한 부족하다. 요즘, 많은 수문모형의 개발로 토양 수분 또한 결과물로써 많이 이용된다. 그러나 모형에서 모의된 토양수분의 신뢰성을 판단할 때는 실측자료를 이용하는 것이 가장 이상적이나, 토양수분의 실측값이 부족하므로, 유역의 토양수분 실측자료 대신 모의된 토양수분을 적용할 필요가 있다. 이에 따라 본 연구에서는 우리나라 소양강댐 유역에 대하여 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 실측 토양수분자료를 최대한 활용함으로써 토양수분을 모의하였다. 또한 모의된 토양수분을 Terra MODIS NDVI(Normalized Difference Vegetation Index)와 LST(Land Surface Temperature)과의 상관성을 계절별, 월별로 분석하여 그 관계식을 도출하고자 하였다.

  • PDF

고랭지 농업의 작물별 객토량 변화에 따른 토양유실 저감 분석 (Analysis of Soil Erosion Reduction Ratio with Changes in Soil Reconditioning Amount for Highland Agricultural Crops)

  • 허성구;전만식;박상헌;김기성;강성근;옥용식;임경재
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.185-194
    • /
    • 2008
  • There is increased soil erosion potential at highland agricultural crop fields because of its topographic characteristics and site-specific agricultural management practices performed at these areas. The agricultural upland fields are usually located at the sloping areas, resulting in higher soil loss, pesticides, and nutrients in case of torrential rainfall events or typhoon, such as 2002 Rusa and 2003 MaeMi. At the highland agricultural fields, the soil reconditioning have been performed every year to decrease damage by continuous cropping and pests. Also it has been done to increase crop productivity and soil fertility. The increased amounts of soil used for soil reconditioning are increasing over the years, causing significant impacts on water quality at the receiving water bodies. In this study, the field investigation was done to check soil reconditioning status for potato, carrot, and cabbage at the Doam-dam watershed. With these data obtained from the field investigation, the Soil and Water Assesment Tool (SWAT) model was used to simulate the soil loss reduction with environment-friendly and agronomically enough soil reconditioning. The average soil reconditioning depth for potato was 34.3 cm, 48.3 cm for carrot, and 31.2 cm for cabbage at the Doam-dam watershed. These data were used for SWAT model runs. Before the SWAT simulation, the SWAT ArcView GIS Patch, developed by the Kangwon National University, was applied because of proper simulation of soil erosion and sediment yield at the sloping watershed, such as the Doam-dam watershed. With this patch applied, the Coefficient of Determination ($R^2$) value was 0.85 and the Nash-Sutcliffe Model Efficiency (EI) was 0.75 for flow calibration. The $R^2$ value was 0.87 and the EI was 0.85 for flow validation. For sediment simulation, the $R^2$ value was 0.91 and the EI was 0.70, indicating the SWAT model predicts the soil erosion processes and sediment yield at the Doam-dam watershed. With the calibrated and validated SWAT for the Doam-dam watershed, the soil erosion reduction was investigated for potato, carrot, and cabbage. For potato, around 19.3 cm of soil were over applied to the agricultural field, causing 146% of more soil erosion rate, approximately 33.3 cm, causing 146% of more soil erosion for carrot, and approximately 16.2 cm, causing 44% of more soil erosion. The results obtained in this study showed that excessive soil reconditioning are performed at the highland agricultural fields, causing severe muddy water issues and water quality degradation at the Doam-water watershed. The results can be used to develop soil reconditioning standard policy for various crops at the highland agricultural fields, without causing problems agronomically and environmentally.