• Title/Summary/Keyword: SVM-RFE알고리즘

Search Result 4, Processing Time 0.018 seconds

A Design of an Optimized Classifier based on Feature Elimination for Gene Selection (유전자 선택을 위해 속성 삭제에 기반을 둔 최적화된 분류기 설계)

  • Lee, Byung-Kwan;Park, Seok-Gyu;Tifani, Yusrina
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.384-393
    • /
    • 2015
  • This paper proposes an optimized classifier based on feature elimination (OCFE) for gene selection with combining two feature elimination methods, ReliefF and SVM-RFE. ReliefF algorithm is filter feature selection which rank the data by the importance of the data. SVM-RFE algorithm is a wrapper feature selection which wrapped the data and rank the data based on the weight of feature. With combining these two methods we get less error rate average, 0.3016138 for OCFE and 0.3096779 for SVM-RFE. The proposed method also get better accuracy with 70% for OCFE and 69% for SVM-RFE.

Variable Selection of Feature Pattern using SVM-based Criterion with Q-Learning in Reinforcement Learning (SVM-기반 제약 조건과 강화학습의 Q-learning을 이용한 변별력이 확실한 특징 패턴 선택)

  • Kim, Chayoung
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.21-27
    • /
    • 2019
  • Selection of feature pattern gathered from the observation of the RNA sequencing data (RNA-seq) are not all equally informative for identification of differential expressions: some of them may be noisy, correlated or irrelevant because of redundancy in Big-Data sets. Variable selection of feature pattern aims at differential expressed gene set that is significantly relevant for a special task. This issues are complex and important in many domains, for example. In terms of a computational research field of machine learning, selection of feature pattern has been studied such as Random Forest, K-Nearest and Support Vector Machine (SVM). One of most the well-known machine learning algorithms is SVM, which is classical as well as original. The one of a member of SVM-criterion is Support Vector Machine-Recursive Feature Elimination (SVM-RFE), which have been utilized in our research work. We propose a novel algorithm of the SVM-RFE with Q-learning in reinforcement learning for better variable selection of feature pattern. By comparing our proposed algorithm with the well-known SVM-RFE combining Welch' T in published data, our result can show that the criterion from weight vector of SVM-RFE enhanced by Q-learning has been improved by an off-policy by a more exploratory scheme of Q-learning.

Combining Support Vector Machine Recursive Feature Elimination and Intensity-dependent Normalization for Gene Selection in RNAseq (RNAseq 빅데이터에서 유전자 선택을 위한 밀집도-의존 정규화 기반의 서포트-벡터 머신 병합법)

  • Kim, Chayoung
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.47-53
    • /
    • 2017
  • In past few years, high-throughput sequencing, big-data generation, cloud computing, and computational biology are revolutionary. RNA sequencing is emerging as an attractive alternative to DNA microarrays. And the methods for constructing Gene Regulatory Network (GRN) from RNA-Seq are extremely lacking and urgently required. Because GRN has obtained substantial observation from genomics and bioinformatics, an elementary requirement of the GRN has been to maximize distinguishable genes. Despite of RNA sequencing techniques to generate a big amount of data, there are few computational methods to exploit the huge amount of the big data. Therefore, we have suggested a novel gene selection algorithm combining Support Vector Machines and Intensity-dependent normalization, which uses log differential expression ratio in RNAseq. It is an extended variation of support vector machine recursive feature elimination (SVM-RFE) algorithm. This algorithm accomplishes minimum relevancy with subsets of Big-Data, such as NCBI-GEO. The proposed algorithm was compared to the existing one which uses gene expression profiling DNA microarrays. It finds that the proposed algorithm have provided as convenient and quick method than previous because it uses all functions in R package and have more improvement with regard to the classification accuracy based on gene ontology and time consuming in terms of Big-Data. The comparison was performed based on the number of genes selected in RNAseq Big-Data.

Gene Selection Based on Support Vector Machine using Bootstrap (붓스트랩 방법을 활용한 SVM 기반 유전자 선택 기법)

  • Song, Seuck-Heun;Kim, Kyoung-Hee;Park, Chang-Yi;Koo, Ja-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.531-540
    • /
    • 2007
  • The recursive feature elimination for support vector machine is known to be useful in selecting relevant genes. Since the criterion for choosing relevant genes is the absolute value of a coefficient, the recursive feature elimination may suffer from a scaling problem. We propose a modified version of the recursive feature elimination algorithm using bootstrap. In our method, the criterion for determining relevant genes is the absolute value of a coefficient divided by its standard error, which accounts for statistical variability of the coefficient. Through numerical examples, we illustrate that our method is effective in gene selection.