• Title/Summary/Keyword: SVM control

Search Result 215, Processing Time 0.031 seconds

A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork

  • Xu, Yi;Chen, Quansheng;Liu, Yan;Sun, Xin;Huang, Qiping;Ouyang, Qin;Zhao, Jiewen
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.362-375
    • /
    • 2018
  • This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.

Performance and Root Mean Squared Error of Kernel Relaxation by the Dynamic Change of the Moment (모멘트의 동적 변환에 의한 Kernel Relaxation의 성능과 RMSE)

  • 김은미;이배호
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.788-796
    • /
    • 2003
  • This paper proposes using dynamic momentum for squential learning method. Using The dynamic momentum improves convergence speed and performance by the variable momentum, also can identify it in the RMSE(root mean squared error). The proposed method is reflected using variable momentum according to current state. While static momentum is equally influenced on the whole, dynamic momentum algorithm can control the convergence rate and performance. According to the variable change of momentum by training. Unlike former classification and regression problems, this paper confirms both performance and regression rate of the dynamic momentum. Using RMSE(root mean square error ), which is one of the regression methods. The proposed dynamic momentum has been applied to the kernel adatron and kernel relaxation as the new sequential learning method of support vector machine presented recently. In order to show the efficiency of the proposed algorithm, SONAR data, the neural network classifier standard evaluation data, are used. The simulation result using the dynamic momentum has a better convergence rate, performance and RMSE than those using the static moment, respectively.

  • PDF

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.

A Product Quality Prediction Model Using Real-Time Process Monitoring in Manufacturing Supply Chain (실시간 공정 모니터링을 통한 제품 품질 예측 모델 개발)

  • Oh, YeongGwang;Park, Haeseung;Yoo, Arm;Kim, Namhun;Kim, Younghak;Kim, Dongchul;Choi, JinUk;Yoon, Sung Ho;Yang, HeeJong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.4
    • /
    • pp.271-277
    • /
    • 2013
  • In spite of the emphasis on quality control in auto-industry, most of subcontract enterprises still lack a systematic in-process quality monitoring system for predicting the product/part quality for their customers. While their manufacturing processes have been getting automated and computer-controlled ever, there still exist many uncertain parameters and the process controls still rely on empirical works by a few skilled operators and quality experts. In this paper, a real-time product quality monitoring system for auto-manufacturing industry is presented to provide the systematic method of predicting product qualities from real-time production data. The proposed framework consists of a product quality ontology model for complex manufacturing supply chain environments, and a real-time quality prediction tool using support vector machine algorithm that enables the quality monitoring system to classify the product quality patterns from the in-process production data. A door trim production example is illustrated to verify the proposed quality prediction model.

A Study on Searching Stabled EMI Shielding Effectiveness Measurement Point for Military Communication Shelter Using Support Vector Machine and Process Capability Analysis (서포트 벡터 머신과 공정능력분석을 이용한 군 통신 쉘터의 EMI 차폐효과 안정 포인트 탐색 연구)

  • Ku, Ki-Beom;Kwon, Jae-Wook;Jin, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.321-328
    • /
    • 2019
  • A military shelter for communication and information is necessary to optimize the integrated combat ability of weapon systems in the network centric warfare. Therefore, the military shelter is required for EMI shielding performance. This study examines the stable measurement points for EMI shielding effectiveness of a military shelter for communication and information. The measurement points were found by analyzing the EMI shielding effectiveness measurement data with data mining technique and process capability analysis. First, a support vector machine was used to separate the measurement point that has stable EMI shielding effectiveness according to set condition. Second, this process was conducted with process capability analysis. Finally, the results of data mining technique were compared with those of process capability analysis. As a result, 24 measurement points with stable EMI shielding effectiveness were found.

Prediction of Alcohol Consumption Based on Biosignals and Assessment of Driving Ability According to Alcohol Consumption (생체 신호 기반 음주량 예측 및 음주량에 따른 운전 능력 평가)

  • Park, Seung Won;Choi, Jun won;Kim, Tae Hyun;Seo, Jeong Hun;Jeong, Myeon Gyu;Lee, Kang In;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.27-34
    • /
    • 2022
  • Drunk driving defines a driver as unable to drive a vehicle safely due to drinking. To crack down on drunk driving, alcohol concentration evaluates through breathing and crack down on drinking using S-shaped courses. A method for assessing drunk driving without using BAC or BrAC is measurement via biosignal. Depending on the individual specificity of drinking, alcohol evaluation studies through various biosignals need to be conducted. In this study, we measure biosignals that are related to alcohol concentration, predict BrAC through SVM, and verify the effectiveness of the S-shaped course. Participants were 8 men who have a driving license. Subjects conducted a d2 test and a scenario evaluation of driving an S-shaped course when they attained BrAC's certain criteria. We utilized SVR to predict BrAC via biosignals. Statistical analysis used a one-way Anova test. Depending on the amount of drinking, there was a tendency to increase pupil size, HR, normLF, skin conductivity, body temperature, SE, and speed, while normHF tended to decrease. There was no apparent change in the respiratory rate and TN-E. The result of the D2 test tended to increase from 0.03% and decrease from 0.08%. Measured biosignals have enabled BrAC predictions using SVR models to obtain high Figs in primary and secondary cross-validations. In this study, we were able to predict BrAC through changes in biosignals and SVMs depending on alcohol concentration and verified the effectiveness of the S-shaped course drinking control method.

An Ensemble Approach to Detect Fake News Spreaders on Twitter

  • Sarwar, Muhammad Nabeel;UlAmin, Riaz;Jabeen, Sidra
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.294-302
    • /
    • 2022
  • Detection of fake news is a complex and a challenging task. Generation of fake news is very hard to stop, only steps to control its circulation may help in minimizing its impacts. Humans tend to believe in misleading false information. Researcher started with social media sites to categorize in terms of real or fake news. False information misleads any individual or an organization that may cause of big failure and any financial loss. Automatic system for detection of false information circulating on social media is an emerging area of research. It is gaining attention of both industry and academia since US presidential elections 2016. Fake news has negative and severe effects on individuals and organizations elongating its hostile effects on the society. Prediction of fake news in timely manner is important. This research focuses on detection of fake news spreaders. In this context, overall, 6 models are developed during this research, trained and tested with dataset of PAN 2020. Four approaches N-gram based; user statistics-based models are trained with different values of hyper parameters. Extensive grid search with cross validation is applied in each machine learning model. In N-gram based models, out of numerous machine learning models this research focused on better results yielding algorithms, assessed by deep reading of state-of-the-art related work in the field. For better accuracy, author aimed at developing models using Random Forest, Logistic Regression, SVM, and XGBoost. All four machine learning algorithms were trained with cross validated grid search hyper parameters. Advantages of this research over previous work is user statistics-based model and then ensemble learning model. Which were designed in a way to help classifying Twitter users as fake news spreader or not with highest reliability. User statistical model used 17 features, on the basis of which it categorized a Twitter user as malicious. New dataset based on predictions of machine learning models was constructed. And then Three techniques of simple mean, logistic regression and random forest in combination with ensemble model is applied. Logistic regression combined in ensemble model gave best training and testing results, achieving an accuracy of 72%.

Smart Helmet for Vital Sign-Based Heatstroke Detection Using Support Vector Machine (SVM 이용한 다중 생체신호기반 온열질환 감지 스마트 안전모 개발)

  • Jaemin, Jang;Kang-Ho, Lee;Subin, Joo;Ohwon, Kwon;Hak, Yi;Dongkyu, Lee
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.433-440
    • /
    • 2022
  • Recently, owing to global warming, average summer temperatures are increasing and the number of hot days is increasing is increasing, which leads to an increase in heat stroke. In particular, outdoor workers directly exposed to the heat are at higher risk of heat stroke; therefore, preventing heat-related illnesses and managing safety have become important. Although various wearable devices have been developed to prevent heat stroke for outdoor workers, applying various sensors to the safety helmets that workers must wear is an excellent alternative. In this study, we developed a smart helmet that measures various vital signs of the wearer such as body temperature, heart rate, and sweat rate; external environmental signals such as temperature and humidity; and movement signals of the wearer such as roll and pitch angles. The smart helmet can acquire the various data by connecting with a smartphone application. Environmental data can check the status of heat wave advisory, and the individual vital signs can monitor the health of workers. In addition, we developed an algorithm that classifies the risk of heat-related illness as normal and abnormal by inputting a set of vital signs of the wearer using a support vector machine technique, which is a machine learning technique that allows for rapid binary classification with high reliability. Furthermore, the classified results suggest that the safety manager can supervise the prevention of heat stroke by receiving feedback from the control system.

Intelligent Character Recognition System for Account Payable by using SVM and RBF Kernel

  • Farooq, Muhammad Umer;Kazi, Abdul Karim;Latif, Mustafa;Alauddin, Shoaib;Kisa-e-Zehra, Kisa-e-Zehra;Baig, Mirza Adnan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.213-221
    • /
    • 2022
  • Intelligent Character Recognition System for Account Payable (ICRS AP) Automation represents the process of capturing text from scanned invoices and extracting the key fields from invoices and storing the captured fields into properly structured document format. ICRS plays a very critical role in invoice data streamlining, we are interested in data like Vendor Name, Purchase Order Number, Due Date, Total Amount, Payee Name, etc. As companies attempt to cut costs and upgrade their processes, accounts payable (A/P) is an example of a paper-intensive procedure. Invoice processing is a possible candidate for digitization. Most of the companies dealing with an enormous number of invoices, these manual invoice matching procedures start to show their limitations. Receiving a paper invoice and matching it to a purchase order (PO) and general ledger (GL) code can be difficult for businesses. Lack of automation leads to more serious company issues such as accruals for financial close, excessive labor costs, and a lack of insight into corporate expenditures. The proposed system offers tighter control on their invoice processing to make a better and more appropriate decision. AP automation solutions provide tighter controls, quicker clearances, smart payments, and real-time access to transactional data, allowing financial managers to make better and wiser decisions for the bottom line of their organizations. An Intelligent Character Recognition System for AP Automation is a process of extricating fields like Vendor Name, Purchase Order Number, Due Date, Total Amount, Payee Name, etc. based on their x-axis and y-axis position coordinates.

Machine Learning-based landslide susceptibility mapping - Inje area, South Korea

  • Chanul Choi;Le Xuan Hien;Seongcheon Kwon;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.248-248
    • /
    • 2023
  • In recent years, the number of landslides in Korea has been increasing due to extreme weather events such as localized heavy rainfall and typhoons. Landslides often occur with debris flows, land subsidence, and earthquakes. They cause significant damage to life and property. 64% of Korea's land area is made up of mountains, the government wanted to predict landslides to reduce damage. In response, the Korea Forest Service has established a 'Landslide Information System' to predict the likelihood of landslides. This system selects a total of 13 landslide factors based on past landslide events. Using the LR technique (Logistic Regression) to predict the possibility of a landslide occurrence and the accuracy is known to be 0.75. However, most of the data used for learning in the current system is on landslides that occurred from 2005 to 2011, and it does not reflect recent typhoons or heavy rain. Therefore, in this study, we will apply a total of six machine learning techniques (KNN, LR, SVM, XGB, RF, GNB) to predict the occurrence of landslides based on the data of Inje, Gangwon-do, which was recently produced by the National Institute of Forest. To predict the occurrence of landslides, it is necessary to process converting landslide events and factors data into a suitable form for machine learning techniques through ArcGIS and Python. In addition, there is a large difference in the number of data between areas where landslides occurred or not. Therefore, the prediction was performed after correcting the unbalanced data using Tomek Links and Near Miss techniques. Moreover, to control unbalanced data, a model that reflects soil properties will use to remove absolute safe areas.

  • PDF