• Title/Summary/Keyword: SVM control

Search Result 215, Processing Time 0.032 seconds

A Decision Support Model for Sustainable Collaboration Level on Supply Chain Management using Support Vector Machines (Support Vector Machines을 이용한 공급사슬관리의 지속적 협업 수준에 대한 의사결정모델)

  • Lim, Se-Hun
    • Journal of Distribution Research
    • /
    • v.10 no.3
    • /
    • pp.1-14
    • /
    • 2005
  • It is important to control performance and a Sustainable Collaboration (SC) for the successful Supply Chain Management (SCM). This research developed a control model which analyzed SCM performances based on a Balanced Scorecard (ESC) and an SC using Support Vector Machine (SVM). 108 specialists of an SCM completed the questionnaires. We analyzed experimental data set using SVM. This research compared the forecasting accuracy of an SCMSC through four types of SVM kernels: (1) linear, (2) polynomial (3) Radial Basis Function (REF), and (4) sigmoid kernel (linear > RBF > Sigmoid > Polynomial). Then, this study compares the prediction performance of SVM linear kernel with Artificial Neural Network. (ANN). The research findings show that using SVM linear kernel to forecast an SCMSC is the most outstanding. Thus SVM linear kernel provides a promising alternative to an SC control level. A company which pursues an SCM can use the information of an SC in the SVM model.

  • PDF

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

A Study on Robustness Improvement of $H_{\infty}$ Control Using SVM (SVM을 이용한 $H_{\infty}$ 제어의 강인성 향상에 관한 연구)

  • Kim, Min-Chan;Yoon, Seong-Sik;Park, Seung-Kyu;Ahn, Ho-Gyun;Kwak, Gun-Pyong;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.276-281
    • /
    • 2008
  • This paper proposes a new sliding surface which can have the same dynamics of nominal system based on SVM(Support Vector Machines). The conventional sliding mode control can not have the properties of $H_{\infty}$ controller because its sliding surface has lower order dynamics than the original system. The additional states must be used to solve this problem. However, The sliding surface of this paper can have the dynamics of $H_{\infty}$ control system by using support vector machines without defining any additional dynamic state. By using SVM, the property of $H_{\infty}$ control system can be estimated as a relationship between the states. With this relationship, a new sliding surface can be designed and have $H_{\infty}$ control system properties. As a result, in spite of the parameter uncertainty, the proposed controller can have the same dynamic of nominal system controlled by $H_{\infty}$ controller.

A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network (SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구)

  • Lee, In-Soo;Cho, Jung-Hwan;Seo, Hae-Moon;Nam, Yoon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

Improvement of Evolutionary Computation of Genetic Algorithm using SVM

  • Cho, Byung-Sun;Han, So-Hee;Son, Sung-Han;Kim, Jin-Su;Park, Kang-Bak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1513-1516
    • /
    • 2003
  • Genetic algorithm is well known as a stochastic searching method. In this paper, a modified genetic algorithm using 'Suppor Vector Machines (SVM)' is proposed. SVM is used to reduce the number of calling the objective function which in turn accelerate the searching speed compared to the conventional GA.

  • PDF

A Voice Controlled Service Robot Using Support Vector Machine

  • Kim, Seong-Rock;Park, Jae-Suk;Park, Ju-Hyun;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1413-1415
    • /
    • 2004
  • This paper proposes a SVM(Support Vector Machine) training algorithm to control a service robot with voice command. The service robot with a stereo vision system and dual manipulators of four degrees of freedom implements a User-Dependent Voice Control System. The training of SVM algorithm that is one of the statistical learning theories leads to a QP(quadratic programming) problem. In this paper, we present an efficient SVM speech recognition scheme especially based on less learning data comparing with conventional approaches. SVM discriminator decides rejection or acceptance of user's extracted voice features by the MFCC(Mel Frequency Cepstrum Coefficient). Among several SVM kernels, the exponential RBF function gives the best classification and the accurate user recognition. The numerical simulation and the experiment verified the usefulness of the proposed algorithm.

  • PDF

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

A Study on Current Control using a Novel SVM-Based Hysteresis Controller in D-STATCOM (SVM 기반 히스테리시스 제어기를 이용한 D-STATCOM 전류 제어에 관한 연구)

  • Choi Jeong-Hye;Shin, Eun-Chul;Yoo, Ji-Yoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.293-301
    • /
    • 2006
  • This paper proposes a control algorithm for STATic synchronous COMpensator(STATCOM), based on Space Vector Modulation(SVM) and Hysteresis Current Controller(HCC) techniques. STATCOM is used to reactive power compensation on a distribution network. The proposed algorithm utilizes the advantages of the fast dynamic response of the hysteresis current control and the reduced switching number of the SVM scheme. The controller determines a set of space vectors from a region detector and applies a space vector. A set of space vectors including the zero vector, to reduce the number of switching, is determined from output signals of two hysteresis comparators. The presented control system was tested with digital simulation in the Borland C++ program and demonstrate the advantage of the proposed hysteresis current controller.

Space Vector Modulation based on Model Predictive Control to Reduce Current Ripples with Subdivided Space Voltage Vectors (전류 리플 저감을 위한 세분화된 공간전압벡터를 이용한 모델 예측 제어 기반의 SVM 방법)

  • Moon, Hyun-Cheol;Lee, June-Seok;Lee, June-Hee;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.18-26
    • /
    • 2017
  • This paper proposes the model predictive control with space vector modulation (SVM) method for current control of voltage-source inverter. Unlike the conventional method using a limited number of voltage vectors by switching states, the proposed method can consider various voltage vectors to identify the optimized voltage vector. The various voltage vectors are obtained by subdividing existing voltage vectors. The optimized voltage vector that minimizes the cost function is selected and applied to the inverter by using the SVM. The various voltage vectors and SVM reduce current ripples in the output AC side of the inverter compared with the conventional method. The effectiveness and performance of the proposed method are verified through simulation and experiment with a three-phase two-level voltage-source grid-connected inverter.

Fault Detection of Reactive Ion Etching Using Time Series Support Vector Machine (Time Series Support Vector Machine을 이용한 Reactive Ion Etching의 오류검출 및 분석)

  • Park Young-Kook;Han Seung-Soo;Hong Sang-J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.247-250
    • /
    • 2006
  • Maximizing the productivity in reactive ion etching, early detection of process equipment anomaly became crucial in current high volume semiconductor manufacturing environment. To address the importance of the process fault detection for productivity, support vector machines (SVMs) is employed to assist the decision to determine process faults in real-time. SVMs for eleven steps of etching runs are established with data acquired from baseline runs, and they are further verified with the data from controlled (acceptable) and perturbed (unacceptable) runs. Then, each SVM is further utilized for the fault detection purpose utilizing control limits which is well understood in statistical process control chart. Utilizing SVMs, fault detection of reactive ion etching process is demonstrated with zero false alarm rate of the controlled runs on a run to run basis.

  • PDF