• Title/Summary/Keyword: SVM algorithm

Search Result 637, Processing Time 0.023 seconds

Fault Tolerant Operation of CHB Multilevel Inverters Based on the SVM Technique Using an Auxiliary Unit

  • Kumar, B. Hemanth;Lokhande, Makarand M.;Karasani, Raghavendra Reddy;Borghate, Vijay B.
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.56-69
    • /
    • 2018
  • In this paper, an improved Space Vector Modulation (SVM) based fault tolerant operation on a nine-level Cascaded H-Bridge (CHB) inverter with an additional backup circuit is proposed. Any type of fault in a power converter may result in a power interruption and productivity loss. Three different faults on H-bridge modules in all three phases based on the SVM approach are investigated with diagrams. Any fault in an inverter phase creates an unbalanced output voltage, which can lead to instability in the system. An additional auxiliary unit is connected in series to the three phase cascaded H-bridge circuit. With the help of this and the redundant switching states in SVM, the CHB inverter produces a balanced output with low harmonic distortion. This ensures high DC bus utilization under numerous fault conditions in three phases, which improves the system reliability. Simulation results are presented on three phase nine-level inverter with the automatic fault detection algorithm in the MATLAB/SIMULINK software tool, and experimental results are presented with DSP on five-level inverter to validate the practicality of the proposed SVM fault tolerance strategy on a CHB inverter with an auxiliary circuit.

Classification method for failure modes of RC columns based on key characteristic parameters

  • Yu, Bo;Yu, Zecheng;Li, Qiming;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • An efficient and accurate classification method for failure modes of reinforced concrete (RC) columns was proposed based on key characteristic parameters. The weight coefficients of seven characteristic parameters for failure modes of RC columns were determined first based on the support vector machine-recursive feature elimination. Then key characteristic parameters for classifying flexure, flexure-shear and shear failure modes of RC columns were selected respectively. Subsequently, a support vector machine with key characteristic parameters (SVM-K) was proposed to classify three types of failure modes of RC columns. The optimal parameters of SVM-K were determined by using the ten-fold cross-validation and the grid-search algorithm based on 270 sets of available experimental data. Results indicate that the proposed SVM-K has high overall accuracy, recall and precision (e.g., accuracy>95%, recall>90%, precision>90%), which means that the proposed SVM-K has superior performance for classification of failure modes of RC columns. Based on the selected key characteristic parameters for different types of failure modes of RC columns, the accuracy of SVM-K is improved and the decision function of SVM-K is simplified by reducing the dimensions and number of support vectors.

Context Dependent Fusion with Support Vector Machines (Support Vector Machine을 이용한 문맥 민감형 융합)

  • Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.37-45
    • /
    • 2013
  • Context dependent fusion (CDF) is a fusion algorithm that combines multiple outputs from different classifiers to achieve better performance. CDF tries to divide the problem context into several homogeneous sub-contexts and to fuse data locally with respect to each sub-context. CDF showed better performance than existing methods, however, it is sensitive to noise due to the large number of parameters optimized and the innate linearity limits the application of CDF. In this paper, a variant of CDF using support vector machines (SVMs) for fusion and kernel principal component analysis (K-PCA) for context extraction is proposed to solve the problems in CDF, named CDF-SVM. Kernel PCA can shape irregular clusters including elliptical ones through the non-linear kernel transformation and SVM can draw a non-linear decision boundary. Regularization terms is also included in the objective function of CDF-SVM to mitigate the noise sensitivity in CDF. CDF-SVM showed better performance than CDF and its variants, which is demonstrated through the experiments with a landmine data set.

A Control Method of ASMR Contents through Attention and Meditation Detection Based on Internet of Things (사물인터넷 기반의 집중도 및 명상도 검출을 통한 ASMR 콘텐츠 제어 기법)

  • Kim, Minchang;Seo, Jeongwook
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1819-1824
    • /
    • 2018
  • This paper proposes a control method of ASMR(autonomous sensory meridian response) contents to relieve user's stress and improve his attention. The proposed method measures EEG(electroencephalography), attention, meditation, and eyeblink data from an EEG device and sends them to an oneM2M-compliant IoT(internet of things) server platform through an Android IoT Application. Then a SVM(support vector machine) model is built to classify user's mental health status by using EEG, attention and meditation data collected in the server platform. The ASMR contents are controlled by the mental health status classified by a SVM model and the eyeblink data. When comparing the SVM models according to types of data used, the SVM model with attention and meditation data showed accuracy of 85.7%. It was verified that the proposed control algorithm of ASMR contents properly worked as the mental health status from the SVM model and the eyeblink data changed.

Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine (Support Vector Machine을 이용한 선에코 특성 분석 및 탐지 방법)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.665-670
    • /
    • 2014
  • A SVM is a kind of binary classifier in order to find optimal hyperplane which separates training data into two groups. Due to its remarkable performance, the SVM is applied in various fields such as inductive inference, binary classification or making predictions. Also it is a representative black box model; there are plenty of actively discussed researches about analyzing trained SVM classifier. This paper conducts a study on a method that is automatically detecting the line-shaped echoes, sun strobe echo and radial interference echo, using the SVM algorithm because the line-shaped echoes appear relatively often and disturb weather forecasting process. Using a spatial clustering method and corrected reflectivity data in the weather radar, the training data is made up with mean reflectivity, size, appearance, centroid altitude and so forth. With actual occurrence cases of the line-shaped echoes, the trained SVM classifier is verified, and analyzed its characteristics using the decision tree method.

KOMPSAT-3A Urban Classification Using Machine Learning Algorithm - Focusing on Yang-jae in Seoul - (기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 -)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1567-1577
    • /
    • 2020
  • Urban land cover classification is role in urban planning and management. So, it's important to improve classification accuracy on urban location. In this paper, machine learning model, Support Vector Machine (SVM) and Artificial Neural Network (ANN) are proposed for urban land cover classification based on high resolution satellite imagery (KOMPSAT-3A). Satellite image was trained based on 25 m rectangle grid to create training data, and training models used for classifying test area. During the validation process, we presented confusion matrix for each result with 250 Ground Truth Points (GTP). Of the four SVM kernels and the two activation functions ANN, the SVM Polynomial kernel model had the highest accuracy of 86%. In the process of comparing the SVM and ANN using GTP, the SVM model was more effective than the ANN model for KOMPSAT-3A classification. Among the four classes (building, road, vegetation, and bare-soil), building class showed the lowest classification accuracy due to the shadow caused by the high rise building.

An Optimized Combination of π-fuzzy Logic and Support Vector Machine for Stock Market Prediction (주식 시장 예측을 위한 π-퍼지 논리와 SVM의 최적 결합)

  • Dao, Tuanhung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.43-58
    • /
    • 2014
  • As the use of trading systems has increased rapidly, many researchers have become interested in developing effective stock market prediction models using artificial intelligence techniques. Stock market prediction involves multifaceted interactions between market-controlling factors and unknown random processes. A successful stock prediction model achieves the most accurate result from minimum input data with the least complex model. In this research, we develop a combination model of ${\pi}$-fuzzy logic and support vector machine (SVM) models, using a genetic algorithm to optimize the parameters of the SVM and ${\pi}$-fuzzy functions, as well as feature subset selection to improve the performance of stock market prediction. To evaluate the performance of our proposed model, we compare the performance of our model to other comparative models, including the logistic regression, multiple discriminant analysis, classification and regression tree, artificial neural network, SVM, and fuzzy SVM models, with the same data. The results show that our model outperforms all other comparative models in prediction accuracy as well as return on investment.

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

Detecting Rogue AP using k-SVM method (k-SVM을 이용한 Rogue AP 탐지 기법 연구)

  • Lee, Jae-Wook;Lee, Si-Young;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.87-95
    • /
    • 2014
  • Under only authorized AP is allowable environment, rogue AP which is generated by a smartphone tethering can be a serious security breach. To solve rogue AP problem, this paper proposes classifying algorithm of Kernel Support Vector Machine using features of RTT data. Through our experiment, we can detect rogue AP from LTE mobile network.

Fault Diagnosis of Three-Phase PWM Inverters Using Wavelet and SVM

  • Kim, Dong-Eok;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.377-385
    • /
    • 2009
  • In this paper, a diagnosis method for switch open-circuit faults in three-phase PWM inverters is proposed, which employs support vector machine (SVM) as classifying method. At first, a discrete wavelet transform (DWT) is used to detect a discontinuity of currents due to the fault, and then the features for fault diagnosis are extracted. Next, these features are employed as inputs for the SVM training. After training, the SVM produces an optimized boundary which is used identifying the fault. Finally, the fault classification is performed online with instantaneous features. The experimental results have verified the validity of the proposed estimation algorithm.