• Title/Summary/Keyword: SUS410

Search Result 6, Processing Time 0.019 seconds

Evaluation on Corrosion Behaviour and Adhensivity of Oxide Coated Materials (산화물 피복강재의 부식거동 및 밀착성 평가)

  • Lee Jong-Rark
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.34-41
    • /
    • 1998
  • To oxide film, $A1_2O_3,\;Ta_2O_5$ and $ZrO_2$, coated on stainless steel (SUS410, SUS304) and pure Fe using RF magnetron sputtering method, the corrosion resistance on oxide coatings was studied using electrochemical measurement. Also, the adherence between film and substarte was studied. The adherence index ( $\chi$ ) was determined by the measure of micro hardness test. In this paper, we know that oxide film coated on SUS304 have better corrosion resistance than that coated on SUS410. In oxide film, the difference of corrosion resistance due to crystal structure have not been showed. In evaluating defect area rate of ceramic coated materials, CPCD method can be used effectively. In the micro-hardness test, with $1{\mu}m$ thickness film, it has only one the value of $\chi$. Above $2{\mu}m$ thickness film, however, get another value of $\chi$ as the cracks in film. The oxide film adhere well on the mild materials such as pure steel than high intensity materials like stainless.

  • PDF

Study on Proton Radiation Resistance of 410 Martensitic Stainless Steels under 3 MeV Proton Irradiation

  • Lee, Jae-Woong;Surabhi, S.;Yoon, Soon-Gil;Ryu, Ho Jin;Park, Byong-Guk;Cho, Yeon-Ho;Jang, Yong-Tae;Jeong, Jong-Ryul
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.183-186
    • /
    • 2016
  • In this study, we report on an investigation of proton radiation resistance of 410 martensitic stainless steels under 3 MeV proton with the doses ranging from $1.0{\times}10^{15}$ to $1.0{\times}10^{17}p/cm^2$ at the temperature 623 K. Vibrating sample magnetometer (VSM) and X-ray diffractometer (XRD) were used to study the variation of magnetic properties and structural damages by virtue of proton irradiation, respectively. VSM and XRD analysis revealed that the 410 martensitic stainless steels showed proton radiation resistance up to $10^{17}p/cm^2$. Proton energy degradation and flux attenuations in 410 stainless steels as a function of penetration depth were calculated by using Stopping and Range of Ions in Matter (SRIM) code. It suggested that the 410 stainless steels have the radiation resistance up to $5.2{\times}10^{-3}$ dpa which corresponds to neutron irradiation of $3.5{\times}10^{18}n/cm^2$. These results could be used to predict the maintenance period of SUS410 stainless steels in fission power plants.

A Study on the Strength of Brazed Joint for Automotive EGR Cooler by Heat Treatment Conditions (열처리조건에 의한 자동차용 EGR쿨러의 브레이징부 접합강도에 관한 연구)

  • Lee, Joon;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.210-216
    • /
    • 2009
  • Stainless steel EGR cooler of diesel engine is widely used to prevent the corrosion due to the content of sulfur in diesel fuel. The strength of brazed joint between stainless steel materials is very important. It is essential to observe the spreading ratio of the filler metals under the condition of deoxidation or vacuum during heating process. In this experiment, spreading ratio was tested to find the optimum brazing condition for stainless steel using brazing filler metals of FP-613, BNi-2 and BNi-5 on sus304 and sus410. Anti-corrosion tests were also performed on the above filler metals with solution of 5% $H_2SO_4$, 65% $HNO_3$ and 5% $NH_4OH$. Consequently FP-613 has good ability for anti-corrosion with 30% of chromium content compared with other filler metals. The optimum brazing conditions are occurred at $960^{\circ}C$ for 90 min. and at $1090^{\circ}C$ for 50 min. at the same degree of vacuum, $2{\sim}3{\times}10^{-3}$ Torr.

Measurements of Magnetic Properties of Electromagnetic Actuator in High-Temperature Environment

  • Noh, M.;Gi, M.J.;Kim, D.;Park, Y.W.;Lee, J.;Kim, J.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.86-90
    • /
    • 2015
  • Electromagnetic actuators are versatile and able to meet demanding requirements, such as operation in very low or very high temperatures. When the actuator is used in a high-temperature environment up to $500^{\circ}C$, we need to know how the force-producing capability of the actuator is affected by the operating temperature. Specifically, it is necessary to know the temperature-dependence of magnetic properties that determine the mechanical forces. In this paper, we measure the changes in magnetic properties of SUS410 material in high-temperature environment. We also devise a novel signal processing technique to remove the integration drift. At the field strength of 18,000 A/m, we found that the flux density at $500^{\circ}C$ is decreased by 26%, compared to the result at room temperature. Therefore, the actuator must be sized appropriately, if it is to operate in high-temperature settings.