Considering video copy transform diversity, a multi-feature video copy detection algorithm based on a Speeded-Up Robust Features (SURF) local descriptor is proposed in this paper. Video copy coarse detection is done by an ordinal measure (OM) algorithm after the video is preprocessed. If the matching result is greater than the specified threshold, the video copy fine detection is done based on a SURF descriptor and a box filter is used to extract integral video. In order to improve video copy detection speed, the Hessian matrix trace of the SURF descriptor is used to pre-match, and dimension reduction is done to the traditional SURF feature vector for video matching. Our experimental results indicate that video copy detection precision and recall are greatly improved compared with traditional algorithms, and that our proposed multiple features algorithm has good robustness and discrimination accuracy, as it demonstrated that video detection speed was also improved.
Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.
3차원 모델은 현재 많은 분야에서 사용되고 있다. 특히 기존 평면의 지도에 비해 3차원으로 제작된 지도는 현실감이 뛰어날 뿐만 아니라 제한된 평면 지도 안에서 얻을 수 없는 다양한 정보를 제공 할 수 있기 때문이다. 본 논문에서는 지금까지 모델링을 위해 사용되었던 고가의 레이저 스캐너를 대체하여 디지털 카메라 스테레오 매칭 알고리즘의 성능 개선을 통하여 쉽고 빠르게 양산 할 수 있는 프로세스를 제안하였다. 본 연구에 사용된 알고리즘은 OpenCV 라이브러리 내에 포함되어있는 SURF 알고리즘이며 알고리즘이 가지고 있는 부정합 점들을 호모그라피 변환과 에피폴라 라인을 이용하여 제거하였다. 또한 개선된 알고리즘을 상용프로그램과 비교하였으며 상용프로그램에 비하여 성능이 우수한 것으로 확인하였다. 제안된 방법은 스테레오 매칭의 조건을 만족한다면 쉽고 빠르게 3차원 모델링을 할 수 있기 때문에 각종 디지털 지도나 3차원 가상 현실 분야에 크게 기여할 것으로 예상된다.
위성영상은 취득 당시의 외부 환경적 요소에 의해 기하 및 방사오차가 발생하며, 이는 변화탐지에 있어 오탐지를 유발하는 원인이 된다. 이러한 기하 및 방사오차는 전처리과정인 기하보정 및 방사보정을 통해 제거해야 한다. 본 연구에서는 SURF (Speeded-Up Robust Feature)기법과 마스크필터를 활용하여 동시에 기하 및 방사보정을 자동으로 수행하는 방법론을 제안하고자 한다. SURF 기법을 통해 추출되는 정합쌍(MPs: Matching Points)은 자동 기하보정에 활용되며, 다시기 영상 간 불변특성을 보이는 지역에서 추출된다. 이러한 정합쌍의 특성을 바탕으로 상대방사보정에 활용되는 PIFs (Pseudo Invariant Features)를 선정하고, 선정된 PIFs를 중심으로 마스크필터를 생성하여 2차 PIFs를 추출했다. 추출된 정합쌍들을 활용하여 자동 기하보정을 수행한 후 기하보정된 영상에 PIFs를 활용하여 상대방사보정을 수행한 결과 기하 및 방사오차가 함께 제거된 것을 확인하였다.
본 논문에서는 적외선 영상에서 영상 변위를 이용하여 기동 표적 영역을 탐지하고, SURF(Speeded Up Robust Features) 특징점에 대한 BAS(Beam Angle Statistics)를 이용하여 분류하는 시스템에 대하여 설명한다. 영상 기반 기술 분야에서 대표적인 대응점 정합 알고리즘인 SURF 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보이기 때문에 널리 사용되고 있다. SURF를 이용한 대부분의 객체 인식의 경우 특징점 추출과 정합의 과정을 수행하지만, 제안하는 기법은 표적의 기동 특성을 반영하여 영상의 변위 추정을 통하여 표적의 영역을 탐지하고 SURF 특징점 들의 기하구조를 판단함으로써 표적 분류를 수행한다. 제안하는 기법은 무인 표적 탐지/인지 시스템의 초기모델 구축을 위하여 연구가 진행되었으며, 모의 표적을 이용한 가상 영상과 적외선 실 영상을 이용하여 실험한 결과 약 73~85%의 분류 성능을 확인하였다.
본 논문에서는 FAST(Features from Accelerated Segment Test) 특징점 검출기와 SURF 특징점 표현자(descriptor)를 수정하고 조합하여 영상의 왜곡에 강인하면서 정합을 수행할 수 있는 새로운 특징점 정합 기법을 제안한다. 스케일 공간을 생성하여 스케일 변화를 고려하고 잡음에 강인하기 위해 영상에서 특징점 후보군을 결정한다. 기존의 FAST는 에지 부분에서 특징점을 많이 검출하게 되는데 이러한 단점을 주곡률(principal curvatures)을 적용하여 개선하고자 한다. 또한 영상의 회전 변화에 강인하기 위해 SURF 특징점 표현자를 사용한다. 제안하는 정합 기법은 적은 계산량으로 기존의 특징점 정합 기법보다 우수한 성능을 나타낸다. 특별히 잡음이 존재하는 영상에서의 정합에 강인함을 보여준다.
여러 개의 영상으로부터 스케일, 조명, 시점 등의 환경변화를 고려하여 대응점을 찾는 일은 쉽지 않다. SURF는 이러한 환경변화에 불변하는 특징점을 찾는 알고리즘중 하나로서 일반적으로 성능이 우수하다고 알려진 SIFT와 견줄만한 성능을 보이면서 속도를 크게 향상시킨 알고리즘이다. 하지만 SURF는 그레이공간 상의 정보만 이용함에 따라 컬러공간상에 주어진 많은 유용한 특징들을 활용하지 못한다. 본 논문에서는 강인한 컬러특정정보를 포함하는 확장된 SURF알고리즘을 제안한다. 제안하는 방법의 우수성은 다양한 조명환경과 시점변화에 따른 영상을 SIFT와 SURF 그리고 제안하는 컬러정보를 적용한 SURF알고리즘과 비교 실험을 통해 입증하였다.
영상에서 임의의 점에 대한 고유한 특징을 계산하는 알고리즘은 파노라마 영상의 제작, 스테레오 영상의 획득, 물체 인식, 이미지 분석 등에 다양하게 사용되는 중요한 요소이다. 일반적으로 어떤 점의 특징은 스칼라 형태가 아닌 벡터형태로 나타나게 되는데, 무수히 많은 특징 점들을 서로 비교하는 작업은 매우 많은 계산량을 요구한다. 본 연구에서는 영상의 특징점 계산에 SURF(speeded up robust features)를 이용하였고, 이미지로부터 추출된 특징을 PCA(principal component analysis)기법을 이용하여 벡터의 차원을 축소하여 연결리스트 자료구조에 정렬한 다음 특징을 비교하는 기법을 제안한다. 제안된 특징의 비교 방법을 적용할 경우 기존 방법의 매칭 정확도는 유지한 상태에서 계산시간을 줄일 수 있는 것을 실험을 통하여 확인하였다.
LiDAR (Light Detection And Ranging) strip adjustment is process to improve geo-referencing of the ALS (Airborne Laser Scanner) strips that leads to seamless LiDAR data. Multiple strips are required to collect data over the large areas, thus the strips are overlapped in order to ensure data continuity. The LSA (LiDAR Strip Adjustment) consists of identifying corresponding features and minimizing discrepancies in the overlapping strips. The corresponding features are utilized as control features to estimate transformation parameters. This paper applied SURF (Speeded Up Robust Feature) to identify corresponding features. To improve determination of the corresponding feature, false matching points were removed by applying three schemes: (1) minimizing distance of the SURF feature vectors, (2) selecting reliable matching feature with high cross-correlation, and (3) reflecting geometric characteristics of the matching pattern. In the strip adjustment procedure, corresponding points having large residuals were removed iteratively that could achieve improvement of accuracy of the LSA eventually. Only a few iterations were required to reach reasonably high accuracy. The experiments with simulated and real data show that the proposed method is practical and effective to airborne LSA. At least 80 % accuracy improvement was achieved in terms of RMSE (Root Mean Square Error) after applying the proposed schemes.
이 논문은 이미지 매칭 알고리즘의 일종인 수정된 SURF(Speeded Up Robust Feature)와 이미지 블렌딩 알고리즘의 일종인 멀티밴드 블렌딩으로 구성된 파노라마 이미지 스티칭 시스템을 제안한다. 이 논문은 처음에 수정된 SURF를 기술하고 SIFT(Scale Invariant Feature Transform)와 비교하여 SURF를 이 시스템에서 채택한 이유에 대하여 논한다. 그리고 멀티밴드 블렌딩에 대하여 기술하고, 이어서 제안된 파노라마 이미지 스티칭 시스템의 구조에 대하여 설명하고 마지막으로 이미지 질과 처리시간에 대한 평가를 한다. 평가결과는 제안된 시스템이 개별 이미지들을 이음매 없이 연결하였으며, 많은 개개의 이미지 데이터에 대해서도 완전한 파노라마 이미지를 생성하였으며 처리 시간도 SIFT보다 빨랐다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.