• 제목/요약/키워드: SURF

검색결과 474건 처리시간 0.026초

SURF와 멀티밴드 블렌딩에 기반한 파노라마 스티칭 (Stitcing for Panorama based on SURF and Multi-band Blending)

  • 라연;신성식;박현주;권오봉
    • 한국멀티미디어학회논문지
    • /
    • 제14권2호
    • /
    • pp.201-209
    • /
    • 2011
  • 이 논문은 이미지 매칭 알고리즘의 일종인 수정된 SURF(Speeded Up Robust Feature)와 이미지 블렌딩 알고리즘의 일종인 멀티밴드 블렌딩으로 구성된 파노라마 이미지 스티칭 시스템을 제안한다. 이 논문은 처음에 수정된 SURF를 기술하고 SIFT(Scale Invariant Feature Transform)와 비교하여 SURF를 이 시스템에서 채택한 이유에 대하여 논한다. 그리고 멀티밴드 블렌딩에 대하여 기술하고, 이어서 제안된 파노라마 이미지 스티칭 시스템의 구조에 대하여 설명하고 마지막으로 이미지 질과 처리시간에 대한 평가를 한다. 평가결과는 제안된 시스템이 개별 이미지들을 이음매 없이 연결하였으며, 많은 개개의 이미지 데이터에 대해서도 완전한 파노라마 이미지를 생성하였으며 처리 시간도 SIFT보다 빨랐다.

컬러 불변 특징을 갖는 확장된 SURF 알고리즘 (Extended SURF Algorithm with Color Invariant Feature)

  • 윤현섭;한영준;한헌수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.193-196
    • /
    • 2009
  • 여러 개의 영상으로부터 스케일, 조명, 시점 등의 환경변화를 고려하여 대응점을 찾는 일은 쉽지 않다. SURF는 이러한 환경변화에 불변하는 특징점을 찾는 알고리즘중 하나로서 일반적으로 성능이 우수하다고 알려진 SIFT와 견줄만한 성능을 보이면서 속도를 크게 향상시킨 알고리즘이다. 하지만 SURF는 그레이공간 상의 정보만 이용함에 따라 컬러공간상에 주어진 많은 유용한 특징들을 활용하지 못한다. 본 논문에서는 강인한 컬러특정정보를 포함하는 확장된 SURF알고리즘을 제안한다. 제안하는 방법의 우수성은 다양한 조명환경과 시점변화에 따른 영상을 SIFT와 SURF 그리고 제안하는 컬러정보를 적용한 SURF알고리즘과 비교 실험을 통해 입증하였다.

  • PDF

메모리 사용률을 개선한 SURF 알고리즘 특징점 추출기의 하드웨어 가속기 설계 (An Implementation of a Feature Extraction Hardware Accelerator based on Memory Usage Improvement SURF Algorithm)

  • 정창민;곽재창;이광엽
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.77-80
    • /
    • 2013
  • SURF 알고리즘은 영상의 특징점 검출 및 서술자를 생성하는 알고리즘으로 크기와 회전, 조명 및 시점 등의 환경 변화에 강인한 특징을 가지고 있다. 이러한 특징 때문에 객체 인식, 파노라마 이미지, 3차원 영상 복원 등 영상처리 분야에서 많이 사용되고 있다. 하지만 SURF 알고리즘과 같은 대부분의 인식 알고리즘은 많은 양의 연산을 필요로 하기 때문에 실시간 구현이 어렵다. 본 논문은 SURF의 메모리 접근 횟수와 메모리 사용량을 분석하여 효율적인 메모리를 설계함으로써 메모리 접근 횟수와 메모리 사용량을 최소화하여 실시간 구현이 가능하도록 설계하였다.

  • PDF

얼굴 인식의 정확도 향상을 위한 SURF 특징점에서의 Gabor 기술어 추출 (Gabor Descriptors Extraction in the SURF Feature Point for Improvement Accuracy in Face Recognition)

  • 이재용;김지은;오승준
    • 방송공학회논문지
    • /
    • 제17권5호
    • /
    • pp.808-816
    • /
    • 2012
  • 얼굴 인식은 여러 분야에서의 활발한 연구를 통해 많은 발전이 있었고, 현재도 활발한 연구가 진행되고 있다. 최근 들어 물체 인식에 주로 사용되어온 특징점 추출 알고리즘이 얼굴 인식에도 적용되고 있다. 본 논문은 대표적인 특징점 추출 알고리즘인 SURF를 이용한다. 사람은 얼굴의 형태 및 구조가 유사하므로 물체를 인식하는 경우보다 분별력이 떨어지기 때문에 SURF를 이용한 얼굴인식의 정확도는 낮은 편이다. 이를 개선하고자 본 논문에서는 SURF를 통해 추출한 특징점에서 Gabor 웨이블릿 변환을 사용해 기술어를 추출하는 얼굴 인식 방법을 제안한다. 실험 결과에서 제안하는 방법이 기존 SURF 기반의 얼굴 인식에 비해 정확도가 약 23% 향상된 것을 확인하였다.

적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법 (The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images)

  • 김재협;최봉준;천승우;이종민;문영식
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.43-52
    • /
    • 2014
  • 본 논문에서는 적외선 영상에서 영상 변위를 이용하여 기동 표적 영역을 탐지하고, SURF(Speeded Up Robust Features) 특징점에 대한 BAS(Beam Angle Statistics)를 이용하여 분류하는 시스템에 대하여 설명한다. 영상 기반 기술 분야에서 대표적인 대응점 정합 알고리즘인 SURF 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보이기 때문에 널리 사용되고 있다. SURF를 이용한 대부분의 객체 인식의 경우 특징점 추출과 정합의 과정을 수행하지만, 제안하는 기법은 표적의 기동 특성을 반영하여 영상의 변위 추정을 통하여 표적의 영역을 탐지하고 SURF 특징점 들의 기하구조를 판단함으로써 표적 분류를 수행한다. 제안하는 기법은 무인 표적 탐지/인지 시스템의 초기모델 구축을 위하여 연구가 진행되었으며, 모의 표적을 이용한 가상 영상과 적외선 실 영상을 이용하여 실험한 결과 약 73~85%의 분류 성능을 확인하였다.

볼레로 시스템상의 SURF의 운영에 관한 연구 (A Study on the Operation of SURF in the Bolero System)

  • 전순환
    • 정보학연구
    • /
    • 제6권4호
    • /
    • pp.163-175
    • /
    • 2003
  • 2000년 6월부터 발전되어 온 서류결제과정을 완전히 자동화하는 새로운 부가가치서비스인 볼레로 시스템상의 SURF에 대하여 그 의의와 기능, 특징 등을 살펴보고, SURF의 운용프로세스, SURF에 의한 지급방법과 유용성에 관하여 분석한 다음, 그 한계성을 고찰하고자 하는 것이다.

  • PDF

얼굴인식에서 정확도 향상을 위한 SURF 특징점에서의 Gabor 기술어 추출 (Gabor descriptors extraction in the SURF feature point for improvement accuracy in face recognition)

  • 김지은;조혜정;정광수;오승준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 추계학술대회
    • /
    • pp.19-22
    • /
    • 2011
  • 본 논문에서는 대표적인 특징점 추출 알고리즘인 SURF (Speeded Up Robust Features)와 얼굴인식에서 널리 쓰이는 Gabor 기술어를 이용한 얼굴 인식 방법을 소개한다. SURF 기반 영상인식 방법은 특징점을 찾고 해당 특징점에서 기술어를 추출한 후, 정합을 수행한다. 본 논문에서는 SURF 를 통해 추출한 특징점에서 Gabor 웨이블릿 변환을 사용해 기술어를 추출하는 얼굴인식 방법을 제안한다. 잘 알려진 ORL 데이터베이스에서의 실험에서 제안한 방법이 기존 SURF 기반의 얼굴 인식 방법에 비해 더 높은 얼굴 인식 성능을 보여줄 뿐 아니라 정합시간을 포함한 처리 속도면에서도 더 우수한 성능을 보였다. 이러한 실험 결과를 통하여 제안하는 방법이 SURF 보다 얼굴 인식에 적합함을 확인할 수 있었다.

  • PDF

기하학적 특징을 이용한 SURF 알고리즘의 대응점 개선 (SURF algorithm to improve Correspondence Point using Geometric Features)

  • 김지현;구경모;김철기;차의영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.43-46
    • /
    • 2012
  • 컴퓨터 비전을 이용한 다양한 응용 분야에 있어서, 특징점을 이용한 응용 분야가 많이 이루어지고 있다. 그 중에 Global feature는 표현의 위험성과 부정확성으로 인해서 많이 사용되고 있지 않으며, Local feature를 이용한 연구가 주로 이루고 있다. 그 중에 SURF(Speeded-Up Robust Features) 알고리즘은 다수의 영상에서 같은 물리적 위치에 있는 동일한 특징점을 찾아서 매칭하는 방법으로 널리 알려진 특징점 매칭 알고리즘이다. 하지만 SURF 알고리즘을 이용하여 특징점을 매칭하여 정합 쌍을 구하였을 때 매칭되는 특징점들의 정확도가 떨어지는 단점이 있다. 본 논문에서는 특징점 매칭 알고리즘인 SURF를 사용하여 대응되는 특징점들을 들로네 삼각형의 기하학적 특징을 이용하여 정확도가 높은 특징점을 분류하여 SURF 알고리즘의 매칭되는 대응점들의 정확도를 높이는 방법을 제안한다.

  • PDF

Multi-Person Tracking Using SURF and Background Subtraction for Surveillance

  • Yu, Juhee;Lee, Kyoung-Mi
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.344-358
    • /
    • 2019
  • Surveillance cameras have installed in many places because security and safety is becoming important in modern society. Through surveillance cameras installed, we can deal with troubles and prevent accidents. However, watching surveillance videos and judging the accidental situations is very labor-intensive. So now, the need for research to analyze surveillance videos is growing. This study proposes an algorithm to track multiple persons using SURF and background subtraction. While the SURF algorithm, as a person-tracking algorithm, is robust to scaling, rotating and different viewpoints, SURF makes tracking errors with sudden changes in videos. To resolve such tracking errors, we combined SURF with a background subtraction algorithm and showed that the proposed approach increased the tracking accuracy. In addition, the background subtraction algorithm can detect persons in videos, and SURF can initialize tracking targets with these detected persons, and thus the proposed algorithm can automatically detect the enter/exit of persons.

SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구 (Face Recognition based on SURF Interest Point Extraction Algorithm)

  • 강민구;추원국;문승빈
    • 전자공학회논문지CI
    • /
    • 제48권3호
    • /
    • pp.46-53
    • /
    • 2011
  • 본 논문에서는 대표적인 특징점 추출 알고리즘인 SURF (Speeded Up Robust Features)를 이용한 얼굴 인식 방법을 소개한 다. 일반적으로, SURF를 이용한 물체 인식은 특징점 추출 및 정합만을 수행하지만, 본 논문에서 제안하는 SURF를 이용한 얼굴 인식 방법은 특징점 추출 및 정합뿐만 아니라 얼굴 영상 회전 및 특징점 검증을 추가로 수행한다. 얼굴 영상 회전은 특징점의 수를 증가시키기 위해 수행되며, 특징점 검증은 정확하게 정합된 특징점들을 찾기 위해 수행된다. 비록 본 논문에서 제안한 SURF를 이용한 얼굴 인식 방법은 PCA를 이용한 방법보다 연산 시간이 더 요구되었지만, 인식률은 보다 더 높았다. 이러한 실험 결과를 통해, 특징점 추출 알고리즘도 얼굴 인식에 적용할 수 있음을 확인할 수 있었다.