• Title/Summary/Keyword: STSAT3

Search Result 90, Processing Time 0.024 seconds

Simultaneous Observation of FUV Aurora with Precipitating Electrons on STSAT-1

  • Lee, C.N.;Min, K.W.;Lee, J.J.;Kim, K.H.;Kim, Y.H.;Han, W.;Edelstein, J.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.31.2-31.2
    • /
    • 2008
  • We present the results offar ultraviolet (FUV, 1350-1750 ${\AA}$) auroral observations made by the Far-ultraviolet IMaging Spectrograph (FIMS) instrument on the Korean microsatellite STSAT-1. The instrument was capable of resolving spatial structures of a few kilometers with the spectral resolution of 2-3 ${\AA}$. The observations were carried out simultaneously with the measurement of precipitating electrons using an electrostatic analyzer (ESA, 100 eV-20 keV) and a solid state telescope (SST, 170 keV-360 keV) on board the same satellite. With a careful mapping of the field lines, we were able to correlate the particle spectrum to the corresponding FUV spectrum of the footprints of the FIMS image that varied significantly in fine scales. We divided the FIMS spectral band into the LBH long (LBHL, 1640-1715 ${\AA}$) and LBH short (LBHS, 1380-1455 ${\AA}$) bands, and compared the electron energies with the intensities of LBHL and LBHS for the well-defined inverted-V structures. The result shows a strong correlation between the total LBH intensity and the energy flux measured by ESAwhile the peak energy itself does not correlate well with the LBH intensity. On the other hand, it was observed that the ratio of the LBHL intensity to that of LBHS increased significantly as the peak electron energy increased, primarily due to a smaller absorption by O2 at LBHL than at LBHS.

  • PDF

A Study of Galactic Molecular Clouds through Multiwavelength Observations

  • Park, Sung-Joon;Min, Kyoung-Wook;Seon, Kwang-Il;Han, Won-Yong;Lee, Dae-Hee;Edelstein, Jerry;Korpela, Eric;Sankrit, Ravi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.68.1-68.1
    • /
    • 2010
  • We focus on two Galactic molecular clouds that are located in wholly different environments and both are observed by FIMS instrument onboard STSAT-1. The Draco cloud is known as a translucent molecular cloud at high Galactic latitude. The FUV spectra show important ionic lines of C IV, Si IV+O IV], Si II* and Al II, indicating the existence of hot and warm interstellar gases in the region. The enhanced C IV emission inside the Draco cloud region is attributable to the turbulent mixing of the interacting cold and warm/hot media, which is supported by the detection of the O III] emission line and the $H{\alpha}$ feature in this region. The Si II* emission covers the remainder of the region outside the Draco cloud, in agreement with previous observations of Galactic halos. Additionally, the H2 fluorescent map is consistent with the morphology of the atomic neutral hydrogen and dust emission of the Draco cloud. In the Aquila Rift region near Galactic plane, FIMS observed that the FUV continuum emission from the core of the Aquila Rift suffers heavy dust extinction. The entire field is divided into three sub-regions that are known as the- "halo," "diffuse," and "star-forming" regions. The "diffuse" and "star-forming" regions show various prominent H2 fluorescent emission lines, while the "halo" region indicates the general ubiquitous characteristics of H2. The CLOUD model and the FUV line ratio are included here to investigate the physical conditions of each sub-region. Finally, the development of an infrared imaging system known as the MIRIS instrument onboard STSAT-3 is briefly introduced. It can be used in WIM studies through $Pa{\alpha}$ observations.

  • PDF

Prototype Development of the STSAT-3 Secondary Payload COMIS (과학기술위성3호 부탑재체 영상분광기 시험 모델 개발)

  • Lee, Jun-Ho;Lee, Jong-Hun;Kim, Eun-Sil;Lee, Jin-A;Lee, Yun-Mi;Jang, Tae-Seong;Yang, Ho-Sun;Lee, Seung-U
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.363-364
    • /
    • 2009
  • 초소형 영상 분광기 COMIS는 과학기술위성3호에 탑재되어 지표면 및 대기의 분광 촬영을 할 예정으로 개발되고 있다. COMIS는 궤도 700km 상공에서 약 30m의 해상도 및 30km의 관측 폭을 갖고 있으며, 가시광 및 근적외선 영역에서 $16{\sim}62$대역($2{\sim}15nm$ 파장 분해능)의 초분광 관측을 수행할 수 있다. COMIS는 CCD 등의 일부 전자 부품 단위에서의 수입을 제외하곤 설계, 제작 및 평가를 포함한 모든 개발이 국내의 연구진 및 업체에 의하여 진행되고 있다. COMIS는 2010년 말 발사를 목표를 개발되고 있으며, 현재 시험 모델 개발이 진행 중에 있다. 본 논문에서는 현재 진행 중인 시험 모델의 개발 현황을 보고한다.

  • PDF

Opto-mechanical Analysis for Primary Mirror of Earth Observation Camera of the MIRIS (MIRIS EOC 주경의 광기계 해석)

  • Park, Kwi-Jong;Moon, Bong-Kon;Park, Sung-Jun;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nah, Jak-Young;Jeong, Woog-Seob;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Rhee, Seung-Wu;Yang, Sun-Choel;Han, Won-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.262-268
    • /
    • 2011
  • MIRIS(Multi-purpose Infra-Red Imaging System) is the main payload of the STSAT-3(Korea Science and Technology Satellite. 3), which is being developed by KASI(Korea Astronomy & Space Institute). EOC(Earth Observation Camera), which is one of two infrared cameras in MIRIS, is the camera for observing infrared rays from the Earth in the range of $3{\sim}5{\mu}m$. The optical system of the EOC is a Cassegrain prescription with aspheric primary and secondary mirrors, and its aperture is 100mm. A ring type flexure supports the EOC primary mirror with pre-loading in order to withstand expected load due to the shock and vibration from the launcher. Here we attempt to use the same mechanism by which a retainer supports the lens. Through opto-mechanical analysis it was confirmed that the EOC primary mirror is effectively supported.

MIRIS: Science Programs

  • Jeong, Woong-Seob;Matsumoto, Toshio;Seon, Kwangil;Pyo, Jeonghyun;Lee, Dae-Hee;Park, Youngsik;Ree, Chang Hee;Moon, Bongkon;Park, Sung-Joon;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Cha, Sang-Mok;Lee, Sungho;Yuk, In-Soo;Ahn, Kyungjin;Cho, Jungyeon;Lee, Hyung Mok;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.97.2-97.2
    • /
    • 2012
  • The main payload of Science and Technology Satellite 3 (STSAT-3), Multipurpose InfraRed Imaging System (MIRIS) is the first Korean infrared space mission to explore the near-infrared sky with a small astronomical instrument developed by KASI. The 8-cm passively cooled telescope with a wide field of view (3.67 deg. ${\times}$ 3.67 deg.) will be operated in the wavelength range from 0.9 to $2{\mu}m$. It will carry out wide-band imaging and the Paschen-${\alpha}$ emission line survey. After the calibration of MIRIS in our laboratory, MIRIS has been delivered to SaTReC and successfully assembled into the STSAT-3. The main purposes of MIRIS are to perform the observation of Cosmic Infrared Background (CIB) at two wide spectral bands (I and H band) and to survey the Galactic plane at $1.88{\mu}m$ wavelength, the Paschen-${\alpha}$ emission line. CIB observation enables us to reveal the nature of degree-scale CIB fluctuation detected by the IRTS (Infrared Telescope in Space) mission and to measure the absolute CIB level. The MIRIS will continuously monitor the seasonal variation of the zodiacal light towards the both north and south ecliptic poles for the purpose of calibration as well as the effective removal of zodiacal light. The Pashen-${\alpha}$ emission line survey of Galactic plane helps us to understand the origin of Warm Ionized Medium (WIM) and to find the physical properties of interstellar turbulence related to star formation. Here, we also discuss the observation plan with MIRIS.

  • PDF

STSAT-3 Main Payload, MIRIS Flight Model Developments

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • The Main payload of the STSAT-3 (Korea Science & Technology Satellite-3), MIRIS (Multipurpose Infra-Red Imaging System) has been developed for last 3 years by KASI, and its Flight Model (FM) is now being developed as the final stage. All optical lenses and the opto-mechanical components of the FM have been completely fabricated with slight modifications that have been made to some components based on the Engineering Qualification Model (EQM) performances. The components of the telescope have been assembled and the test results show its optical performances are acceptable for required specifications in visual wavelength (@633 nm) at room temperature. The ensuing focal plane integration and focus test will be made soon using the vacuum chamber. The MIRIS mechanical structure of the EQM has been modified to develop FM according to the performance and environment test results. The filter-wheel module in the cryostat was newly designed with Finite Element Analysis (FEM) in order to compensate for the vibration stress in the launching conditions. Surface finishing of all components were also modified to implement the thermal model for the passive cooling technique. The FM electronics design has been completed for final fabrication process. Some minor modifications of the electronics boards were made based on EQM test performances. The ground calibration tests of MIRIS FM will be made with the science grade Teledyne PICNIC IR-array.

  • PDF

Development of Error-Corrector Control Algorithm for Automatic Error Detection and Correction on Space Memory Modules (우주용 메모리의 자동 오류극복을 위한 오류 정정기 제어 알고리즘 개발)

  • Kwak, Seong-Woo;Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1036-1042
    • /
    • 2011
  • This paper presents an algorithm that conducts automatic memory scrubbing operated by dedicated hardwares. The proposed algorithm is designed so that it can scrub entire memory in a given scrub period, while minimally affecting the execution of flight softwares. The scrub controller is constructed in a form of state machines, which have two execution modes - normal mode and burst mode. The deadline event generator and period tick generator are designed in a separate way to support the behavior of the scrub controller. The proposed controller is implemented in VHDL code to validate its applicability. A simple version of the controller is also applied to mass memory modules used in STSAT-3.

A VIEW PLASMA MOTION OF HALL EFFECT THRUSTER WITH PARTICLE SIMULATION (입자모사를 통한 HALL EFFECT THRUSTER의 플라즈마 운동 이해)

  • Lee, J.J.;Jeong, S.I.;Choe, W.;Lee, J.S.;Lim, Y.B.;Seo, M.H.;Kim, H.M.
    • Bulletin of the Korean Space Science Society
    • /
    • 2007.10a
    • /
    • pp.139-143
    • /
    • 2007
  • Electric propulsion has become a cost effective and sound engineering solution for many space applications. The success of SMART-1 and MUSES-C developed by European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) each proved that even small spacecraft could accomplish planetary mission with electric propulsion systems. A small electric propulsion system which is Hall effect thruster like SMART-1 is under development by SaTReC and GDPL (Glow Discharge Plasma Lab.) in KAIST for the next microsatellite, STSAT-3. To achieve optimized propulsion system, it is very necessary to understand plasma motions of Hall effect thruster. In this paper, we try to approach comprehensive plasma model with the particle simulation complementary to Particle In Cell (PIC) simulation. We think these two different approaches will help experimenters to optimize Hall effect thruster performances.

  • PDF

Random Vibration Characteristics of a Whole Structure Composite Satellite Having Hybrid Composite Sandwich Panels (하이브리드 복합재 샌드위치 패널로 구성된 전구조 복합재 위성의 랜덤진동 특성 평가)

  • Cho, Hee-Keun;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.798-805
    • /
    • 2010
  • Whole composite structure small class (150kg) satellite, STSAT-3, was initially developed in Korea. The structure does have aluminum frames that support the structure, and it is composed of only composite sandwich panels. A number of electronic boxes and mechanical apparatus will be shielded within the compartments built up by the composite panels. This study focused on the random vibration responses of the satellite. For this objective, vibration tests and analyses have been successfully performed with respect to STM (structure and thermal model) of the satellite. Additionally, through the experiment and theoretical analyses, the both results' accuracy was verified by comparison each other.

SENSITIVITY CALCULATIONS FOR THE COSMIC IR BACKGROUND OBSERVATIONS BY MIRIS (과학기술위성 3호 다목적 적외선 영상시스템 적외선 우주배경복사 관측 감도 계산)

  • Lee, Dae-Hui;Lee, Seong-Ho;Han, Won-Yong;Park, Jang-Hyeon;Nam, Uk-Won;Jin, Ho;Yuk, In-Su;Park, Yeong-Sik;Park, Seong-Jun;Lee, Hyeong-Mok;Park, Su-Jong;Matsumoto, Toshio;Cooray, Asantha
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.177-181
    • /
    • 2007
  • We present the sensitivity calculation results for observing the Cosmic Infrared Background (CIRB) by the Multi-purpose IR Imaging System (MIRIS), which will be launched in 2010 as a main payload of the Science and Technology Satellite 3 (STSAT-3). MIRIS will observe in I ($0.9{\sim}1.2um$) and H ($1.2{\sim}2.0um$) band with a $4{\times}4$ degree field of view to obtain the large scale structure (${\sim}3$ degree) of the CIRB. With the given specifications of the MIRIS, our sensitivity calculation results show that the MIRIS has a detection limit of ${\sim}9\;nW\;m^{-2}\;sr^{-1}$ (I band) and ${\sim}6\;nW\;m^{-2}\;sr^{-1}$ (H band), which is appropriate to observe the large scale structure of CIRB.