• Title/Summary/Keyword: STS304

Search Result 365, Processing Time 0.022 seconds

Improvement of Wear Resistance of Aluminum by Metal-Ceramic Particle Composite Layer (알루미늄표면에 금속-세라믹입자 복합첨가에 의한 내마모성개선)

  • ;;;中田一博;松田福久
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.96-104
    • /
    • 1997
  • The present study was aimed to correlate the microstructure and the hardness as well as the wear resistance of the metal-ceramic particulated composite layer on the pure Al plate. The composite layers were constructed by the addition of TiC particles on the surface of Al-Cu alloyed layers by PTA overlaying process. Initially, the Al-Cu alloyed layers were achieved by the deposition of Al-(25 ~ 48%) Cu alloys on the pure Al plate by TIG process. It was revealed that TiC particles were uniformly dispersed without any reaction with matrix in the composite layer. The volume fraction of TiC particles (TiC V F) increased from 12% to 55% with increasing the number of pass of composite layer. Hardnesses of (Al-48%Cu + TiC (3&4layers)) composite layer were Hv450 and Hv560, respectively, due to the increase of TiC V/F. Hardnesses of (Al-Cu + TiC) composite layers decreased gradually with insreasing temperature from 100$^{\circ}$C to 400$^{\circ}$C, and hardnesses at 400$^{\circ}$C were then reached to 1/5 - 1/10 of room temperature hardness depending on the construction of composite layers. The Specific wear of (Al + Tic) layer and Al-48%Cu alloyed layer decreased to 1/10 of the of pure Al, while the specific wear of (Al-48%Cu + TiC (4 layers)) composite layer exhibited 1/15 of that of steel such as SS400 and STS304.

  • PDF

상온 상압 플라즈마 표면처리가 비닐과 금형의 anti-sticking에 미치는 영향

  • Ha, Sang-Hun;Choe, Yeong-Jun;Park, Hyeon-Cheol;Han, Jeong-Ho;Jo, Yeong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.387-387
    • /
    • 2010
  • 식품산업 및 가정의 주방에 이르기까지 다양한 분야에서 식품을 가공 조리하는 곳에는 보건 건강을 위하여 비닐장갑은 반드시 필요하다. 최근에는 다양한 소재를 이용하여 위생 비닐장갑을 개발을 하고 있으나 일회용성으로 저가의 물품으로 인식되어 생활에 중요성에 비해 개발이 미흡한 실정이다. 위생 비닐장갑은 다양한 산업에서 필수품으로 활용되고 있는 만큼 위생적이고 내구성이 높은 제품의 개발이 절실히 요구되는 실정이다. 이에 본 연구에서는 봉합면의 측면이 사용중 터지지 않도록 하기 위하여 봉합선의 폭을 기존의 0.1 mm 대신에 1 mm정도로 넓게 하는 기술과 무균성 위생 비닐장갑의 제조 공정 자동화에 주력함으로써, 고품위 무균성 위생비닐장갑을 열공정 안정화 자동화 공정으로 제작코자 하였다. 본 연구의 수행시 당면한 가장 큰 문제점은 봉합선의 폭이 넓어짐에 따라서 knife 형태를 갖는 가열된 금형의 칼날이 비닐과 접촉되어 실링을 하는 단계에서 금형에 비닐이 녹아서 붙어버리는 sticking 현상이 발생하였다. 이는 현장에서 심각한 문제로 더 이상 상용화가 불가능함을 의미한다. 이에 본 연구에서는 금형(die) 재료로 2가지의 서로 다른 소재를 선택해서 상온 상압플라즈마 처리를 함으로써 금형과 비닐사이에 발생하던 sticking 문제를 해결하고자 하였다. 금형으로 사용한 소재는 스테인리스(STS304)와 공구강(SCM)을 사용하였다. 두 시편에 대하여 상온상압 플라즈마 처리를 수행한 뒤 증류수와 Diiodomethane를 이용하여 접촉각과 표면에너지를 측정하였다. 상온 상압플라즈마 처리 시간은 0 ~ 9초로 하였다. 스테인리스의 경우 접촉각이 증류수를 이용하였을 때 $69.7^{\circ}$, $32.2^{\circ}$, $16.7^{\circ}$였으며 Diiodomethane을 이용하였을 때는 $37.3^{\circ}$, $17.6^{\circ}$, $10.6^{\circ}$였다. 표면에너지(surface energy)의 경우 48.13 mN/m, 72.06 mN/m, 78.66 mN/m로 플라즈마 처리시간이 길어질수록 표면 에너지 값이 증가하였다. 공구강의 경우는 증류수를 이용하였을 때 접촉각이 $70.2^{\circ}$, $36.8^{\circ}$, $28.9^{\circ}$였으며 Diiodomethane를 이용하였을 때는 $38.65^{\circ}$, $22.8^{\circ}$, $20.2^{\circ}$였다. 표면에너지의 경우 47.43 mN/m, 69 mN/m, 73.15 mN/m로 스테인리스와 같이 표면에너지 값이 커지는 것을 확인할 수 있었다. 학술대회에서는 금형의 표면에너지를 증기시키거나 감소시키는 방법에 대한 연구결과를 발표할 예정이다.

  • PDF

Electrochemical Characteristics of Supercapacitor Based on Amorphous Ruthenium Oxide In Aqueous Acidic Medium (비정질 루테늄 산화물을 사용한 수계 Supercapacitor의 전기화학적 특성)

  • Choi, Sang-Jin;Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A supercapacitor was developed using an amorphous ruthenium oxide material. The electrode of supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloide hydrate$(RuCl_3{\cdo5}xH_2O)$. Thin film of tantalum was used as a current collector because it had wide. potential window characteristics than titanium and 575304 materials. A supercapacitor was assembled with ruthenium oxide as an electrode active material and 4.8M sulfuric acid solution as an electrolyte. The specific capacitance of the electrode was tested by a cyclic voltammetry using a half cell. The maximum differential specific capacitances during the oxidative and the reductive scans were 710 and $645\;F/g-RuO_2{\cdot}nH_2O$, respectively. The average specific capacitance was $521\;F/g-RuO_2{\cdot}nH_2O$. The assembled supercapacitor was protonated to the potential level of 0.5V vs. SCE. Super-capacitor, which was adjusted to the appropriate protonation level, had the specific capacitance of $151\;F/g-RuO_2{\cdot}nH_2O$ based on the concept of full cell.

The Effects of pH and Alkalinity Adjustment on Internal Corrosion Control and Water Quality in Drinking Water Pipelines (정수의 pH 및 알칼리도 동시 조절이 상수도관의 내부부식 제어 및 수질에 미치는 영향)

  • Lee, Hyun-Dong;Jung, Hae-Ryong;Kwak, Phill-Jae;Chung, Won-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.661-669
    • /
    • 2000
  • This research was carried out to evaluate effect of metallic release and change of water corrosive indices by the pH and alkalinity adjustment using the SDLS (Simulated Distribution Loop System) which consist of six types of pipe loop with DCIP, PVC, PE, STS304, CP, GSP, respectively, and its effects on water quality changes which were microbes quality(SPC), residual chlorine. THMs and other parameters. And it was to propose optimal criteria of water quality control for the field application. According to the results, water control system by pH and alkalinity adjustment showed the changing of corrosive water and reducing of metallic release rate and it was not affects of THMs formation, microbes regrowth and variation of other parameters. Water quality stability and corrosion control were due to calcium carbonate precipitation film formation of pipe inner by water quality control. Therefore, corrosive water control system by pH and alkalinity adjustment can be attributed to effective water quality management in water distribution system according to water quality stability of pH and TIC(Total Inorganic Carbonate concentration) that affect the precipitation and dissolution of solids.

  • PDF

Effects of Adherend Thickness on Adhesive Strength between Organic Adhesive and Metal Adherend (고분자 접착제와 금속 피착재의 접착강도에 미치는 피착재 두께의 영향)

  • Ha, Yungeun;Sim, Jun-Hyung;Baeg, Ju-Hwan;Kim, Min-Kyun;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.127-133
    • /
    • 2020
  • It is important to measure the quantitative adhesive strength between an organic adhesive and a metal adherend. In measuring the adhesive strength between an organic adhesive and a metal adherend, the effect of the kind and thickness of the adherend on the adhesive strength was studied. Two kinds of metal adherends were selected, aluminum (Al1050) and stainless steel (STS304), and a dolly test and a lap shear test were used to measure the adhesive strength. When measuring the adhesive strength between the organic adhesive and the metal adherend by the tensile stress mode of dolly test, the change in the thickness of the metal adherend had little effect on the adhesive strength, however, the adhesive strength was different depending on the kind of the adherend. On the other hand, when measuring the adhesive strength between the organic adhesive and the metal adherend by the lap shear test, the change in the relative thickness of the metal adherend had an effect on the adhesive strength. The reason is that the bending phenomenon of the adherend occurring in the edge of bonding region during the lap shear test contributes to lowering the adhesive strength by generating additional tensile stress in the bonding region. From this work, it is concluded that the dolly test could be widely used when measuring the quantitative adhesive strength of organic adhesives and metal adherend because there is little change in adhesive strength even though the thickness of the adherend is changed.