• Title/Summary/Keyword: STORM

Search Result 1,693, Processing Time 0.032 seconds

Estimating Unit Load of Non-Point Source Pollutants for Landuse Types in Anseongchun Watershed (안성천 유역의 토지이용별 비점오염원 원단위 산정)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1026-1033
    • /
    • 2009
  • In this study, we computed the unit load of nonpoint source for the forest, agricultural, and urban representative region in Anseongchun watershed. In addition, Flow-weighted mean concentration (FWMC) that well represents runoff characteristics of storm water during rainfall, was calculated, and runoff pollutants loading was also examined. FWMCs of 1st rainfall, which runoff coefficient was high, had a tendency higher than those of 2nd rainfall. Based on landuse results, pollutant concentration of the non-urban such as forest and agricultural regions was higher than that of urban region. In case of BOD, runoff pollutants loading was calculated as 1,395, 1,623, 2,268kg/d in 1st rainfall for forest, agricultural, and urban regions, respectively, while runoff loading of 2nd rainfall was 503kg/d in forest), 512kg/d in agricultural, and 898kg/d in urban. By landuses, unit load of the urban as 72.7kg/ha/yr was 12 times higher than that of the agricultural as 6.5kg/ha/yr, and 8 times higher than that of the forest as 9.5kg/ha/yr.

The Water Circulation Improvement of Apartment Complex by applying LID Technologies - Focused on the Application of Infiltration Facilities - (LID 기술 적용을 통한 공동주택단지 물순환 개선 연구 - 침투시설 적용을 중심으로 -)

  • Suh, Joo-Hwan;Lee, In-Kyu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.5
    • /
    • pp.68-77
    • /
    • 2013
  • Change in the Global Climate causes flood, drought, heavy snow, and rainfall patterns in the Korean Peninsula. A variety of alternatives related to climate change are considered. The foreign researchers are interested in Low Impact Development(LID); the utilization of water resources and eco friendly development, over 10 years ago. The research and development of related technology has been advanced to apply LID techniques in order to develop several projects in the country. However, sharing of technology or system that can be used easily in the private sector is insufficient. The performance of the elements of LID Technology has not been fully agreed. LID elements of this technology are easy to apply to Apartment complex. The elements are classified technology. The infiltration of elements performs the functions of apartment complex landscaping space technology applied to the target. The water cycle simulation(SWMM 5.0) and technology the implementation of the effectiveness is also verified. For this purpose, three different places in apartment complex to target by SWMM5.0 U.S. EPA conducted utilizing simulated rainfall and applying LID techniques before and after the simulated water cycle (infiltration, surface evaporation, and surface runoff) were conducted. The importance of green space in the LID techniques of quantitative and qualitative storm water control as well as the role of Apartment Housing is to promote Amenity. Remember that the physical limitations of apartment complex and smooth water circulation system for the application of LID integrated management techniques should be applied. To this end, landscapes, architecture, civil engineering, environmental experts for technical consilience between the Low Impact Development efforts are required.

Innovative Geostationary Communication and Remote Sensing Mutli-purpose Satellite Program in Korea-COMS Program

  • Baek, Myung-Jin;Park, Jae-Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.29-35
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of the Ka band Satellite Communication Payload, Meteorological Imager, and Geostationary Ocean Color Imager into a single spacecraft platform. In this paper, Korea's first innovative geostationary Communication, Ocean and Meteorological Satellite (COMS) program is introduced which is fully funded by Korean Government. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service. The Meteorological Imager mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The Geostationary Ocean Color Imager mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into one to meet the overall satellite requirements. In this paper, Ka band communication payload system is more highlighted.

  • PDF

Case Study on the Causes for the Failure of Large Scale Rock Mass Slope Composed of Metasedimentary Rocks (변성퇴적암류로 구성된 대규모 암반사면의 붕괴원인 분석에 관한 사례 연구)

  • Park, Boo-Seong;Jo, Hyun;Cha, Seung-Hun;Lee, Ki-Hwan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.506-525
    • /
    • 2006
  • For the design of large scale rock slope which has complex formations and geological structures, generally, insufficiency of geotechnical investigations and laboratory tests are the main factors of slope failures doling construction. In such case, remedial measures to stabilize slope should be selected and applied through reliable investigations and analysis considering the geotechnical characteristics. The rock slope of this study, one of the largest cut slopes in Korea with a length of 520.0 m and maximum height of 122.0 m consists of metasedimentary rocks. And a case study on the causes of large-scale rock slope failure was carried out by analysis of landslides history and site investigations during construction. When the slope with the original design slope of 0.7: 1.0 (H:V) was partially constructed, the slope failure was occurred due to the factors such as poor conditions of rocks (weathered zone, coaly shale and fault shear zone), various discontinuities (joints, foliations and faults), severe rain storm and so on. The types of failures were rockfall, circular failure, wedge failure and the combination of these types. So, the design of slope was changed three times to ensure long-term slope stability. This paper is intended to be a useful reference for analyzing and estimating the stability of rock slopes whose site conditions are similar to those of this study site such as geological structures and geotechnical properties.

Improvement Measures of Pollutants Unit-Loads Estimation for Paddy Fields (논으로부터 배출되는 영양물질 오염부하량 원단위 산정 방법 개선 방안 검토)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Choi, Woo-Jung;Choi, Woo-Young;Joo, Seuk-Hun;Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Soo-Hyung;Kim, Dong-Ho;Chang, Nam-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • Pollutant unit load developed by Ministry of Environment (MOE) in 1995 has been a tool commonly used for water quality management and environmental policy decision. In spite of the convenience of the method in application, the shortcoming of the method has been criticized especially for nonpoint source pollution from paddy field. In this paper the estimation procedures of pollutant unit load from paddy field in the major river basins (Han, Nakdong, Geum, and Youngsan river) were investigated, and some suggestions of improvement measures of the unit-load estimation were made. The investigation showed that the distributions of rainfall, run-off, and run-off ratio, which are the most important factors affecting discharge amount of pollutants, were not similar among river basins. Such differences seemed to result in a greater unit loads estimation at Han river and at Nakdong river watersheds compared to the others. Therefore, it is not likely to be rationale to compare unit load among the watersheds without consideration of such differences. We conclude that estimation of unit-load through an intensive monitoring of pollutant discharge is crucial for better estimation of unit-load. When such an intensive monitoring is not easy due to labor and expense restriction, we suggest that unit-load should be estimated based on the storm-events which is a representative rainfall-runoff event of the area.

Development on an Automatic Calibration Module of the SWMM for Watershed Runoff Simulation and Water Quality Simulation (유역유출 및 수질모의에 관한 SWMM의 자동 보정 모듈 개발)

  • Kang, Taeuk;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.343-356
    • /
    • 2014
  • The SWMM (storm water management model) has been widely used in the world and is a watershed runoff simulation model used for a single event or a continuous simulation of runoff quantity and quality. However, there are many uncertain parameters in the watershed runoff continuous simulation module and the water quality module, which make it difficult to use the SWMM. The purpose of the study is to develop an automatic calibration module of the SWMM not only for watershed runoff continuous simulation, but also water quality simulation. The automatic calibration module was developed by linking the SWMM with the SCE-UA (shuffled complex evolution-University of Arizona) that is a global optimization algorithm. Estimation parameters of the SWMM were selected and search ranges of them were reasonably configured. The module was validated by calibration and verification of the watershed runoff continuous simulation model and the water quality model for the Donghyang Stage Station Basin. The calibration results for watershed runoff continuous simulation model were excellent and those for water quality simulation model were generally satisfactory. The module could be used in various studies and designs for watershed runoff and water quality analyses.

Vulnerability Assessment of Soil Loss in Farm area to Climate Change Adaption (기후변화 적응 농경지 토양유실 취약성 평가)

  • Oh, Young-Ju;Kim, Myung-Hyun;Na, Young-Eun;Hong, Sun-Hee;Paik, Woen-Ki;Yoon, Seong-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.711-716
    • /
    • 2012
  • Due to the climate change in South Korea the annual total precipitation will increase by 17 percent by 2100. Rainfall is concentrated during the summer in South Korea and the landslide of farmland by heavy rain is expected to increase. Because regional torrential rains accompanied by a storm continue to cause the damage in farmland urgent establishment of adaptation plant for minimizing the damage is in need. In this study we assessed vulnerability of landslide of farmland by heavy rain for local governments. Temporal resolution is 2000 year and the future 2020 year, 2050 year, 2100 year via A1B scenario. Vulnerability of local government were evaluated by three indices such as climate exposure, sensitivity, adaptive capacity and each index is calculated by selected alternative variable. Collected data was normalized and then multiplied by weight value that was elicited in delphi investigation. Current vulnerability is concentrated in Jeju island and Gyeongsangnam-do, however, it is postulated that Kangwon-do will be vulnerable in the future. Through this study, local governments can use the data to establish adaptation plans for farmland landslide by climate change.

Comparing Calculation Techniques for Effective Rainfalls Using NRCS-CN Method: Focused on Introducing Weighted Average and Slope-based CN (NRCS-CN 방법을 이용한 유효우량 산정기법의 비교분석: 가중평균방법과 경사도 도입을 중심으로)

  • Moon, Geon-Woo;Yoo, Ji-Young;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1171-1180
    • /
    • 2014
  • The NRCS-CN method is generally used to estimate effective rainfalls in a basin. However, since the curve number which plays a critical role in the NRCS-CN method was originally developed for US watersheds, it is limited to be directly applied to other basins outside the United States. Therefore various modifications have been suggested to revise the NRCS-CN for specific watershed condition. This study introduced the weighted average method and the slope-based CN to estimate effective rainfalls available for Korean watersheds and compared with the observed direct runoff. The overall results achieved from this study indicated that the adjusted slope-based CN considerably increases effective rainfalls in general and makes the duration of effective storm longer. Based on the statistical error analysis performed for various modifications of NRCS-CN, the weighted average method with the adjusted slope-based CN has highest precision with the observed direct runoff. In addition, after analyzing the relation between the initial loss estimated from rainfall-runoff observations and the potential maximum retention from GIS-based data, it turns out that the assumption of linear relationship between the initial loss and the potential maximum retention is not available for Korean watersheds.

Inundation Analysis of Suyoung.Mangmi Lowland Area Using SWMM and FLUMEN (SWMM과 FLUMEN을 이용한 수영.망미 저지대의 침수 분석)

  • Kang, Tae-Uk;Lee, Sang-Ho;Jung, Tae-Hun;Oh, Jai-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.149-158
    • /
    • 2010
  • Recent rainfall patterns in Korea show that both of the total amount of rainfall and the total number of heavy rain days have been increased. Therefore, the damage resulted from flood disaster has been dramatically increased in Korea. The purpose of the present study is to analyze flooding in an urban area using SWMM linked with FLUMEN. The study area is Suyeong-Mangmi lowland area, Busan, Korea. Suyeong-Mangmi lowland area have been a flooding hazard zone since 1995. The last flooding cases of this area occurred on July 7th and 16th, 2009, and the later flooding case was analyzed in this study. The first step of computation is calculating flow through storm sewers using the urban runoff simulation model of SWMM. The flooding hydrographs are used in the inundation analysis model of FLUMEN. The results of inundation analysis were compared with the real flooding situation of the study area. The real maximum inundation depth was guessed by 1.0 m or more on July 16th. The computation yields the maximum inundation depth of 1.2 m and the result was somewhat overestimated. The errors may be resulted from the runoff simulation and incapability of simulation using FLUMEN for flow into buildings. The models and procedures used in this study can be applied to analysis of flooding resulted from severe rainfall and insufficiency of drainage capacity.

Statistical significance test of polynomial regression equation for Huff's quartile method of design rainfall (설계강우량의 Huff 4분위 방법 다항회귀식에 대한 유의성 검정)

  • Park, Jinhee;Lee, Jaejoon;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.263-272
    • /
    • 2018
  • For the design of hydraulic structures, the design flood discharge corresponding to a specific frequency is generally used by using the design storm calculated according to the rainfall-runoff relationship. In the past, empirical equations such as rational equations were used to calculate the peak flow rate. However, as the duration of rainfall is prolonged, the outflow patterns are different from the actual events, so the accuracy of the temporal distribution of the probability rainfall becomes important. In the present work, Huff's quartile method is used for the temporal distribution of rainfall, and the third quartile is generally used. The regression equation for Huff's quadratic curve applies a sixth order polynomial equation because of its high accuracy throughout the duration of rainfall. However, in statistical modeling, the regression equation needs to be concise in accordance with the principle of simplicity, and it is necessary to determine the regression coefficient based on the statistical significance level. Therefore, in this study, the statistical significance test for regression equation for temporal distribution of the Huff's quartile method, which is used as the temporal distribution method of design rainfall, is conducted for 69 rainfall observation stations under the jurisdiction of the Korea Meteorological Administration. It is statistically significant that the regression equation of the Huff's quartile method can be considered only up to the 4th order polynomial equation, as the regression coefficient is significant in most of the 69 rainfall observation stations.