• Title/Summary/Keyword: STORM

Search Result 1,707, Processing Time 0.025 seconds

A Study on Water Surface Detection Algorithm using Sentinel-1 Satellite Imagery (Sentinel-1 위성영상을 이용한 수표면 면적 추정 알고리즘에 관한 연구)

  • Lee, Dalgeun;Cheon, Eun Ji;Yun, Hyewon;Lee, Mi Hee
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.809-818
    • /
    • 2019
  • The Republic of Korea is very vulnerable to damage from storm and flood due to the rainfall phenomenon in summer and the topography of the narrow peninsula. The damage is recently getting worse because of the concentration rainfall. The accurate damage information production and analysis is required to prepare for future disaster. In this study, we analyzed the water surface area changes of Byeokjeong, Sajeom, Subu and Boryeong using Sentinel-1 satellite imagery. The surface area of the Sentinel-1 satellite, taken from May 2015 to August 2019, was preprocessed using RTC and image binarization using Otsu. The water surface area of reservoir was compared with the storage capacity from WAMIS and RIMS. As a result, Subu and Boryeong showed strong correlations of 0.850 and 0.941, respectively, and Byeokjeong and Sajeom showed the normal correlation of 0.651 and 0.657. Thus, SAR satellite imagery can be used to objective data as disaster management.

Analysis of storm effects on floods using runoff coefficient (유출계수를 이용한 호우가 홍수에 미치는 영향 분석)

  • Kim, Nam Won;Shin, Mun-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.265-265
    • /
    • 2016
  • 호우가 홍수에 미치는 영향의 분석은 수문현상을 이해하고 수공구조물을 설계하는데 반드시 필요한 절차이다. 호우가 홍수에 미치는 영향을 분석하기 위해서 독립된 소유역부터 비독립된 대유역까지 홍수량을 계산하고 그 상관성을 이해해야 하지만 상류쪽의 소유역의 경우 관측자료의 부재가 빈번하여 이러한 전반적인 분석이 쉽지 않다. 그리고 소유역과 대유역의 홍수특성을 연관지어 분석하기 위해서는 비교가능한 홍수특성을 추출해야 하며 이러한 일관된 잣대를 사용한 홍수분석은 중요하다. 본 연구에서는 소유역의 자료부재를 보완하기 위해 자료공간확장 방법을 제안하고 이를 통하여 안동댐 유역내 총 50개 지점의 홍수 시계열자료를 생성하였다. 자료공간확장 방법으로써, 안동댐유역의 1989년부터 2009년까지의 자료의 질이 좋은 20개의 사상을 추출하였고 안동댐유역 내에 위치한 안동댐, 도산, 소천의 수위관측지점의 관측유량자료에 대해 분포형 모형인 GRM 모형의 매개변수를 시행착오법으로 동시에 보정하여 한 개셋의 최적 매개변수를 추정하였다. 이때 모의결과를 평가하기 위하여 Nash-Sutcliffe (NS) 계수를 사용하였으며 20갯 사상의 세군데 관측수위지점에 대해서 모의결과가 전반적으로 0.5 NS 계수 이상으로써 만족할 만한 결과를 얻었다. 이 추정된 매개변수는 47개의 추가적인 관심지점의 유출모의에 사용되었으며 이렇게 모의된 유출시계열 자료는 관측시계열 자료로 가정하여 사용하였다. 이렇게 공간확장되어 생성된 시계열 자료는 이동평균방법을 사용하여 홍수강도-지속시간 곡선으로 변환되었고 50개 유역의 평균강우량 시계열 자료 또한 같은 밥법을 사용하여 강우강도-지속시간 곡선으로 변환되었다. 50개 유역의 비교가능한 일관된 홍수특성을 추출하기 위해 비유량법의 유출계수를 계산하였다. 유출계수를 계산하기 위해 유역별 도달시간을 계산하였으며 이 도달시간에 해당하는 강우강도를 추출하였다. 그리고 유역별 첨두 홍수강도를 유역별 도달시간에 해당하는 강우강도로 나눠줌으로써 유역별 유출계수를 계산하였고 이 유출계수를 유역면적에 대해 도시함으로써 그 경향을 조사하였다. 조사 결과 유역면적이 $100km^2$ 이상으로써 상류에서 하류방향으로 유역이 중첩되면서 증가하는 비독립적인 유역들의 경우 유역면적이 증가함에 따라 유출계수가 작아지거나 커지는 어떠한 경향을 보였다. 하지만 유역면적이 $100km^2$ 이하로써 독립적인 소유역의 경우 유역면적이 증가함에 따라 유출계수는 무작위로 분포되었다. 이것은 비독립적인 유역의 경우에는 호우가 홍수에 어떠한 일관된 영향을 미치나 각각 독립된 소유역의 경우에는 일관된 영향을 미치지 않음으로써 지역화방법에 의한 독립된 인근 미계측유역의 유출추정은 그 신뢰성이 높지 않다는 것을 의미한다.

  • PDF

Beach Deformation Caused by Typhoon Chaba in 2016 Along the Manseongri Coast Related Coastal Improvement Project (연안정비사업이 수행된 만성리 해수욕장에서 2016년 태풍 차바에 의한 해빈변화)

  • Park, Il Heum;Park, Wan-Gyu;Jeong, Seung Myong;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.710-718
    • /
    • 2017
  • After Typhoon Chaba (No.18, 2016) collided with Manseongri Beach, a coastal improvement project was carried out since strong external forces such as waves, storm surges and wave-induced currents were observed to cause beach deformation. The shoreline, beach area and beach volume were periodically surveyed. On the basis of this field data, the beach deformation that occurred at Manseongri Beach has been formally described. Over three months after beach nourishment work began, the beaches were gradually stabilized in terms of natural external forces. However, this stabilization was interrupted by Typhoon Chaba. After two months of typhoon weather, the beach returned to a stable state and no changes were observed until one year after the beach recovery work. Just after the typhoon hit, the shoreline receded from the northern side, where no reduction of external forces occurred, while the rear beach area submerged by breakwater advanced. Also, the beach volume decreased by $3,395m^3$ after the typhoon, due to erosion that occurred on the northern beach, with deposition taking place on the southern backshore area. Therefore, it has been concluded that the coastal improvement project undertaken at Manseongri Beach has significantly contributed to conservation in areas of wave-dominant sediment transport.

Optimal Reservoir Operation Using Goal Programming for Flood Season (Goal Programming을 이용한 홍수기 저수지 최적 운영)

  • Kim, Hye-Jin;Ahn, Jae-Hwang;Choi, Chang-Won;Yi, Jae-Eung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • The purpose of multipurpose reservoir operation in flood season is to reduce the peak flood at a control point by utilizing flood control storage or to minimize flood damage by controlling release and release time. Therefore, the most important thing in reservoir operation for flood season is to determine the optimal release and release time. In this study, goal programming is used for the optimal reservoir operation in flood season. The goal programming minimizes a sum of deviation from the target value using linear programming or nonlinear programming to obtain the optimal alternative for the problem with more than two objectives. To analyze the applicability of goal programming, the historical storm data are utilized. The goal programming is applied to the reservoir system operation as well as single reservoir operation. Chungju reservoir is selected for single reservoir operation and Andong and Imha reservoirs are selected for reservoir system operation. The result of goal programming is compared with that of HEC-5. As a result, it was found that goal programming could maintain the reservoir level within flood control level at the end of a flood season and also maintain flood discharge within a design flood at a control point for each time step. The goal programming operation is different from the real operation in the sense that all inflows are assumed to be given in advance. However, flood at a control point can be reduced by calculating the optimal release and optimal release time using suitable constraints and flood forecasting system.

Comparison of Annual Soil Loss using USLE and Hourly Soil Erosion Evaluation System (USLE모형과 시강우를 고려한 토양유실 평가 시스템을 이용한 연간 토양유실량 비교 분석)

  • Kum, Dong-Hyuk;Ryu, Ji-Chul;Kang, Hyun-Woo;Jang, Chun-Hwa;Shin, Min-Hwan;Shin, Dong-Shuk;Choi, Joong-Dae;Lim, Kyoung-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.991-997
    • /
    • 2011
  • Soil erosion and sediment has been known as one of pollutants causing water quality degradation in water bodies. With global warming issues worldwide, various soil erosion studies have been performed. Although on-site monitoring of sediment loss would be an ideal method to evaluate soil erosion condition, modeling approaches have been utilized to estimate soil erosion and to evaluate various best management practices on soil erosion reduction. Although the USLE has been used in soil erosion estimation for the last 40 years, the USLE model has limitations in estimating event-based soil erosion reflecting rainfall intensity and rainfall duration for long-term period. Thus, the calibrated model, capable of simulating soil erosion using hourly rainfall data, was utilized in this study to evaluate the effects of rainfall amount and rainfall intensity on soil erosion. It was found that USLE soil erosion value is $3.06ton\;ha^{-1}\;yr^{-1}$, while soil erosion values from 2006~2010 were $2.469ton\;ha^{-1}\;yr^{-1}$, $0.882ton\;ha^{-1}\;yr^{-1}$, $1.489ton\;ha^{-1}\;yr^{-1}$, $2.158ton\;ha^{-1}\;yr^{-1}$, $1.602ton\;ha^{-1}\;yr^{-1}$, respectively. Especially, soil erosion from single storm event for 2008-2010 would be responsible for 30% or more of annual soil loss. As shown in this study, hourly soil erosion estimation system would provide more detailed output from the study area. In addition, the effects of rainfall intensity on soil erosion could be evaluated with this system.

Estimation of Nonpoint Source Pollutant Loads for Rural Watershed by AvSWAT (AvSWAT를 이용한 농촌유역 비점원 오염물질 부하량 예측)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Han, Kuk-Heon;Ruy, Jong-Su;Kim, Suk-Cheol;Yun, Sun-Gang;Lee, Jeong-Taek;Kwun, Soon-Kuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • This study was conducted to evaluate the characteristics of nonpoint source pollutants discharge from a small rural watershed. A typical rural area in Gongju City, Korea, was selected as the research site. Water quality and quantity in streams and rainfall samples were analyzed periodically from May to October 2005. Pollutant loads were estimated from a nonpoint source pollution model (AvSWAT, Arcview Soil and Water Assessment Tool). During the rainy season, from June 26 to 30 September 2005 and the dry season, before 26 June and after 30 September 2005, biological oxygen demands and chemical oxygen demands accounted for 91.3% and 93.7% of annual load, respectively, while total-N and total-P were 97.1% and 91.1% of annual load, respectively. The observed stream flow was $66.5m^3sec^{-1}$, while simulation stream flow was $66.2m^3sec^{-1}$. That can be assumed that simulation can be used to estimate the stream flow without practical measurement. However, the runoff trend following the occurrence of a storm event was not recorded properly.

Changes of Current and Wave Patterns Depending on Typhoon Pathways in a Shallow Channel between Jeju and Udo Island (태풍 경로에 따른 제주 우도수로에서의 해류와 파랑 특성 변화)

  • Hong, Ji-Seok;Moon, Jae-Hong;Yoon, Seok-Hoon;Yoon, Woo Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.205-217
    • /
    • 2021
  • A shallow channel between Jeju and Udo Islands, which is located in the northeastern Jeju Island, is influenced by storm- or typhoon-induced currents and surface waves as well as strong tidal currents. This study examines the typhoon-induced current and wave patterns in the channel, using Acoustic Doppler Current Meter (ADCP) measurements and an ocean-wave coupled modeling experiment. Three typhoons were chosen - Chaba (2016), Soulik (2018), and Lingling (2019) - to investigate the responses of currents and waves in their pathways. During the pre-typhoon periods, dominant northward flow and wave propagation were observed in the channel due to the southeasterly winds before the three typhoons. After the passage of Chaba, which passed over the eastern side of Jeju Island, the northward flow and wave propagation were totally reversed to the opposite direction, which was attributed to the strong northerly winds on the left side of the typhoon. In contrast, in the cases of Soulik and Lingling, which passed over the western side of Jeju Island, strong southerly winds on the right side of the typhoons continuously intensified the northward current and wave propagation in the channel. The model-simulated current and wave fields reasonably coincided with observational data, showing southward/northward flow and wave propagation in response to the right/left side of the typhoon pathways. Typhoon-induced downwind flows, and surface waves could enhance up to 2m/s and 3m due to the strong winds that lasted for more than 12 hours. This suggests that the flow and wave patterns in the Udo channel are highly sensitive to the pathway of typhoons and accompanying winds; thus, this may be a crucial factor with regard to the movement of seabed sediments and subsequent coastal erosion.

Estimation of reflectivity-rainfall relationship parameters and uncertainty assessment for high resolution rainfall information (고해상도 강수정보 생산을 위한 레이더 반사도-강수량 관계식 매개변수 보정 및 불확실성 평가)

  • Kim, Tae-Jeong;Kim, Jang-Gyeong;Kim, Jin-Guk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.321-334
    • /
    • 2021
  • A fixed reflectivity-rainfall relationship approach, such as the Marshall-Palmer relationship, for an entire year and different seasons, can be problematic in cases where the relationship varies spatially and temporally throughout a region. From this perspective, this study explores the use of long-term radar reflectivity for South Korea to obtain a nationwide calibrated Z-R relationship and the associated uncertainties within a Bayesian inference framework. A calibrated spatially structured pattern in the parameters exists, particularly for the wet season and parameter for the dry season. A pronounced region of high values during the wet and dry seasons may be partially associated with storm movements in that season. Overall, the radar rainfall fields based on the proposed modeling procedure are similar to the observed rainfall fields. In contrast, the radar rainfall fields obtained from the existing Marshall-Palmer relationship show a systematic underestimation. In the event of high impact weather, it is expected that the value of national radar resources can be improved by establishing an active watershed-level hydrological analysis system.

Development Strategy of Smart Urban Flood Management System based on High-Resolution Hydrologic Radar (고정밀 수문레이더 기반 스마트 도시홍수 관리시스템 개발방안)

  • YU, Wan-Sik;HWANG, Eui-Ho;CHAE, Hyo-Sok;KIM, Dae-Sun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.191-201
    • /
    • 2018
  • Recently, the frequency of heavy rainfall is increasing due to the effects of climate change, and heavy rainfall in urban areas has an unexpected and local characteristic. Floods caused by localized heavy rains in urban areas occur rapidly and frequently, so that life and property damage is also increasing. It is crucial how fast and precise observations can be made on successful flood management in urban areas. Local heavy rainfall is predominant in low-level storms, and the present large-scale radars are vulnerable to low-level rainfall detection and observations. Therefore, it is necessary to introduce a new urban flood forecasting system to minimize urban flood damage by upgrading the urban flood response system and improving observation and forecasting accuracy by quickly observing and predicting the local storm in urban areas. Currently, the WHAP (Water Hazard Information Platform) Project is promoting the goal of securing new concept water disaster response technology by linking high resolution hydrological information with rainfall prediction and urban flood model. In the WHAP Project, local rainfall detection and prediction, urban flood prediction and operation technology are being developed based on high-resolution small radar for observing the local rainfall. This study is expected to provide more accurate and detailed urban flood warning system by enabling high-resolution observation of urban areas.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.