• Title/Summary/Keyword: STL Data

Search Result 132, Processing Time 0.019 seconds

Three-dimensional analysis of artificial teeth position according to three type complete mandibular denture before and after polymerization (세 가지 방식으로 제작한 하악 총의치의 중합 전후에 따른 인공치아 위치 3차원 분석)

  • Park, Jin-Young;Kim, Dong-Yeon;Kim, Won-Soo;Lee, Gwang-Young;Jeong, Il-Do;Bae, So-Yeon;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.40 no.4
    • /
    • pp.217-224
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate accuracy of three type complete mandibular denture of before and after polymerization. Methods: Mandibular edentulous model was selected as the master model. 15 study models were made by Type IV stone. Wax complete mandibular dentures were produced by the denture base and artificial teeth. Before and after curing, STL files were obtained using a blue scanner. By superimposing the digitized complete mandibular denture data(after curing) with the CAD-reference(before curing) three-dimensionally, visual fit-discrepancies were drawn by calculating the root mean square (RMS) and visualized on a color-difference map. Each calculated RMS-value was statistically analyzed by 1-way analysis of variance(ANOVA) (${\alpha}=.05$). Results: Mean(SD) RMS-values was OM group $88.98(6.10){\mu}m$, BM group $82.35(13.46){\mu}m$, BDM group $77.83(9.46){\mu}m$. The results of the 1-way ANOVA showed no statistically significant differences in the RMS values of the Three groups for the material (P > .241). Conclusion : Deformation of artificial teeth position was observed in all groups after resin polymerization. But the values, all group were within the clinically acceptable range. The values of BDM group showed the least deformation than the other two groups.

Efficacy and Accuracy of Patient Specific Customize Bolus Using a 3-Dimensional Printer for Electron Beam Therapy (전자선 빔 치료 시 삼차원프린터를 이용하여 제작한 환자맞춤형 볼루스의 유용성 및 선량 정확도 평가)

  • Choi, Woo Keun;Chun, Jun Chul;Ju, Sang Gyu;Min, Byung Jun;Park, Su Yeon;Nam, Hee Rim;Hong, Chae-Seon;Kim, MinKyu;Koo, Bum Yong;Lim, Do Hoon
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.64-71
    • /
    • 2016
  • We develop a manufacture procedure for the production of a patient specific customized bolus (PSCB) using a 3D printer (3DP). The dosimetric accuracy of the 3D-PSCB is evaluated for electron beam therapy. In order to cover the required planning target volume (PTV), we select the proper electron beam energy and the field size through initial dose calculation using a treatment planning system. The PSCB is delineated based on the initial dose distribution. The dose calculation is repeated after applying the PSCB. We iteratively fine-tune the PSCB shape until the plan quality is sufficient to meet the required clinical criteria. Then the contour data of the PSCB is transferred to an in-house conversion software through the DICOMRT protocol. This contour data is converted into the 3DP data format, STereoLithography data format and then printed using a 3DP. Two virtual patients, having concave and convex shapes, were generated with a virtual PTV and an organ at risk (OAR). Then, two corresponding electron treatment plans with and without a PSCB were generated to evaluate the dosimetric effect of the PSCB. The dosimetric characteristics and dose volume histograms for the PTV and OAR are compared in both plans. Film dosimetry is performed to verify the dosimetric accuracy of the 3D-PSCB. The calculated planar dose distribution is compared to that measured using film dosimetry taken from the beam central axis. We compare the percent depth dose curve and gamma analysis (the dose difference is 3%, and the distance to agreement is 3 mm) results. No significant difference in the PTV dose is observed in the plan with the PSCB compared to that without the PSCB. The maximum, minimum, and mean doses of the OAR in the plan with the PSCB were significantly reduced by 9.7%, 36.6%, and 28.3%, respectively, compared to those in the plan without the PSCB. By applying the PSCB, the OAR volumes receiving 90% and 80% of the prescribed dose were reduced from $14.40cm^3$ to $0.1cm^3$ and from $42.6cm^3$ to $3.7cm^3$, respectively, in comparison to that without using the PSCB. The gamma pass rates of the concave and convex plans were 95% and 98%, respectively. A new procedure of the fabrication of a PSCB is developed using a 3DP. We confirm the usefulness and dosimetric accuracy of the 3D-PSCB for the clinical use. Thus, rapidly advancing 3DP technology is able to ease and expand clinical implementation of the PSCB.