• Title/Summary/Keyword: STIR

Search Result 573, Processing Time 0.023 seconds

Friction Stir Welding in Extrusion Aluminum Carbody of HEMU-400X (Highspeed EMU-400km/h eXperiment) (차세대 분산형 고속전철용 압출재 알루미늄 합금의 마찰교반접합)

  • Chang, W.S.;Chun, C.K.;Kim, H.J.;Park, I.G.;Paik, J.S.;Ro, Y.H.
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.980-985
    • /
    • 2008
  • Since its invention at TWI in 1991, Friction Stir Welding (FSW) has become a major joining process in the aerospace, railway and ship building industries especially in the fabrication of aluminium alloys. In an attempt to optimize the friction stir welding process of Al alloys for extrusion Aluminium carbody of HEMU-400X (Extrusion Aluminum 6xxx series), effects of joining parameters such as tool rotating speed, plunging depth and dwelling time on the weld joints properties were evaluated. Experimental tests were carried out for butt joined Al plates. A wide range of joining conditions could be applied to join Al alloys for Extrusion Aluminum 6xxx series without defects in the weld zone except for certain welding conditions with an insufficient heat input. The microstructures of welds have dynamic-recrystallized grain similar to stir zone in FSW weld. For sound joints without defects, at the rotation speed of 700 rpm with different welding speeds, the tensile strengths of the Stir Zone(SZ) were almost the same, 80% of those of the base metal. (JIS Z 2201)

  • PDF

Effects of Tool Speed on Joining Characteristics during Friction Stir Spot Welding of Mg-alloy(AZ31B) Sheet (마그네슘합금(AZ31B) 판재의 마찰교반 점용접시 접합특성에 미치는 툴 속도의 영향)

  • Shin, Hyung-Seop;Jung, Yoon-Chul;Choi, Kwang
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.80-87
    • /
    • 2011
  • In this study, the friction stir spot welding (FSSW) of Mg alloy sheets has been tried using an apparatus devised with a CNC milling machine to give the precise control of joining condition including tool speed. The probe tool used is made of hard metal and composed of cylindrical shoulder and pin parts. The variation of morphologies formed after the friction stir spot welding depending on the plunge speed of the tool were investigated at each rpm of tool. The history of the temperature distribution and the vertical load induced during the spot welding with friction time were measured by using an Infrared Thermal Imager (THERMA CAMTM SC2000) and a loadcell located below the specimen fixture, respectively. Tensile-shear tests were also performed to evaluate the fracture load of welded specimens. In order to characterize the friction stir spot welding of Mg alloy sheets, the variation of the fracture load was discussed on micrographic observations, temperature distribution during the FSSW according to the plunge speeds of tool.

Heat Transfer Simulation and Effect of Tool Pin Profile and Rotational Speed on Mechanical Properties of Friction Stir Welded AA5083-O

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • A 3D transient heat transfer model is developed by ABAQUS software to study the temperature distribution during friction stir welding process at different rotational speeds. Furthermore, AA 5083-O plates were joined by FSW technique. For this purpose, a universal milling machine was used to perform the welding process and a mechanical vice was used to fix the work pieces in the proper position. The joints were friction stir welded at a constant travel speed 50 mm/min and two rotational speed values; 400 rpm and 630 rpm using two types of tools; cylindrical threaded pin and tapered smooth one. At each welding condition the temperature was measured using infra-red thermal image camera to verify the simulated temperature distribution. The welded joints were visually inspected as well as by macro- and microstructure evolutions. In addition, the welded joints were mechanically tested for hardness and tensile strength. The maximum peak temperature obtained was at higher rotational speed using the threaded tool pin profile. The results showed that the rotational speed affects the peak temperature, defects formation and sizes, and the mechanical properties of friction stir welded joints. Moreover, the threaded tool gives superior mechanical properties than the tapered one at lower rotational speed.

A development of optimizing tools for friction stir welding with 2mm aluminum alloy using milling machine (밀링을 이용한 A1합금 용접을 위한 최적공구형상 및 치수개발에 관한 연구 -마찰용접법에 의하여-)

  • 김인주
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.110-114
    • /
    • 2000
  • This paper shows the possibility of performing the friction stir welding and the development of optimizing tools for FSW with 2mm thick plate of aluminum alloys using milling machine. This research can be reported on achieving above 90% of the tensile strength in 1050 aluminum alloys friction stir welded in the room temperature. This welding process is very simple and does not require filler metal eliminates straightening of the workpiece. It is currently attracting interest from different industries working with aluminum alloys.

  • PDF

Friction Stir Welding of Aluminium alloys and Its Application (알루미늄합금의 마찰교반접합 및 그 적용)

  • 연윤모;정승부;박종목
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.226-234
    • /
    • 2000
  • The friction stir welding technique is a derivative of conventional friction welding, which enables the advantages of solid-phase welding to be applied to the fabrication of long butt and lap joints, with very little postweld distortion. Friction stir welding is a remarkable new welding technique for joining aluminum alloys and has the potential for welding other ferrous materials. It has already been developed beyond a laboratory curiosity and has been proved as a potential practical welding technique offering low-distortion, high-quality, low-cost welds from simple concept machine tool welding equipment. To bring this remarkable method of welding aluminum alloys to the attention of Industry, this article introduces the basic principle of friction stir welding, pointing out the practical advantages and most important of all, describes the exceptionally good metallurgical and mechanical properties.

  • PDF

A Study on the Thermal Behavior of Friction Stir Welding in hi 6061 Alloys (Al 6061합금의 마찰교반접합시 접합부의 열거동에 관한 연구)

  • 방한서;김흥주;고민성;김규훈
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.534-537
    • /
    • 2002
  • In the various industry such as shipbuilding and automobile, etc., Al-alloys are used to reduce weight and improve economical efficiency, and they are mainly utilized in the process of Friction Stir Welding (FSW). A number of studies have been carried out on the metallurgical characteristics of friction stir welding In Al-alloys. However, research on the thermal behavior of FSW by using numerical analysis is not sufficient in the domestic and abroad. In this paper, therefore, numerical simulation was used to find out thermal behaviour of FSW by finite element method. We considered heat source that occurred by friction between tool shoulder including pin and base metal. To confirm the result of simulation, macrostructure is examined and compared after welding. The result of numerical simulation shows that Al-alloy is welded under a melting point of Al around pin by FSW.

The Evaluation of Weldability for Different Manufactured Mg Alloys in FSW (Mg 합금의 제조 방법에 의한 FSW 접합성 평가)

  • 노중석;김홍주;장웅성;방국수
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.256-258
    • /
    • 2003
  • Hot-rolled and Extruded plates of AZ type magnesium alloys were successfully joined by friction stir welding(FSW). AZ31B-H24 and AZ61 plates with the thickness of 4mm were used, and the microstructural development in the stir zone were investigated using optical and scanning electron microscopes. The grain size of base metal and stir zone were investigated using the line-intersecter method. Hardness of the stir zone was remarkably increased due to very fine recrystallized grain structure both in AZ3l and AZ6l alloys. Tensile strengths of the FS welded Mg alloys AZ31 and AZ61 were strongly affected by formation of the intermetallic compounds, ${\beta}$-Al$\sub$12/Mg$\sub$17/.

  • PDF

Microstructures in friction-stir welded Al 7075-T651 alloy (Al 7075의 마찰교반 용접부 미세조직에 관한 연구)

  • Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong;Jeon, Jeong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.331-338
    • /
    • 2005
  • The grain structure, dislocation density and second phase particles in various regions including the stir zone(SZ), thermo-mechanically affected zone(TMAZ), and heat affected zone(HAZ) of a friction stir weld 6.35mm thick aluminum 7075-T651 alloy were investigated and compared with the base metal. The microstruectures of nugget zone were compared according to tool rotation speeds and tool transition speeds. The hardness profiles of nugget zone were increased, while decreasing rotation speed and increasing welding speed. The optimal microstructure was gained at the low rotation speed 800rpm and th high welding speed 124mm/min. The nugget microstructures of fracture surface, transgranular dimple and quasicleavage type were showed different fracture type with the HAZ, shear fracture type.

  • PDF

Evaluation of Electrochemical Characteristic and Investigation on Optimum Condition in Friction Stir Welding for 6061-T6 Al Alloy (6061-T6 합금의 최적 마찰교반 용접 조건 규명 및 전기화학적 특성 평가)

  • Kim, Seong-Jong;Jang, Seok-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.341-350
    • /
    • 2008
  • In friction stir welding for 6061-T6 with various traveling speed and rotation speed conditions, the best mechanical characteristics presented in traveling speed of 507 mm/min and rotation speed of 1100RPM. The maximum tensile strength and yield strength increased with the increasing of traveling speed. The result of the electrochemical characteristic evaluation in friction stir welding at optimum conditions for 6061-T6 Al alloy presented a good characteristics compare to base metal.

Manufacturing and Properties of Metal Based Composite Produced By Friction Stir Processing (마찰교반프로세스를 이용한 금속기 복합소재 제조 및 특성)

  • Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.27-33
    • /
    • 2012
  • Friction stir processing (FSP), developed based on the basic principles of friction stir welding(FSW), a solid-state joining process originally developed for various metal alloys, is an emergingmetalworking technique that can provide localized modification and control of microstructures in near-surface layers of processed metallic components. The FSP causes intense plastic deformation, material mixing, and thermal exposure, resulting in significant microstructural refinement, densification, and homogeneity of the processed zone. The FSP technique has been successfully used for producing the fine-grained structure and surface composite, modifying the microstructure of materials, and synthesizing the composite and intermetallic compound in situ. In this review article, the current state of the understanding and development of FSP is addressed.