• 제목/요약/키워드: STIR

검색결과 573건 처리시간 0.026초

부산지역 낙지볶음의 표준조리법 개발 및 영양소 분석 (The Standardized Recipe and Nutrient Analysis of Stir-fried Whip-arm Octopus in Busan)

  • 류은순
    • 한국식생활문화학회지
    • /
    • 제18권1호
    • /
    • pp.9-16
    • /
    • 2003
  • The purpose of this study was to develop the standardized recipe and to analyze the nutrients of stir-fried whip-arm octopus as one of the kind of traditional local foods in Busan. The standardized recipe was developed by using cookbooks, home recipes, and the recipes by commercial food restaurants. The nutrient was analyzed by using an AOAC method. Sensory evaluations were made on nine sensory attributes by a 12-member panel. As the results, the whip-arm octopus was recorded as a food source for health, rejuvenation in Jasanobo. Since early 1900, the stir-fried method has been used for cooking with the ship-arm octopus. The main ingredients were whip-arm octopus, onion, large green onion as the local stir-fried whip-arm octopus in Busan. The ingredients of soup were shrimp, little neck clam, and water. Seasoning sauce was mixed with red pepper powder, soy sauce, sesame oil, chopped garlic, chopped onion, and sugar. The seasoning sauce was fermented for three days. The results of sensory scores were salty seasoning 3.66/5.00, taste 3.75/5.00, thickness 3.84/5.00, and smell 4.09. Nutrient retention per 100g of the stir-fried whip-arm octopus was 67.54kcal, protein 6.43g, fat 1.66g, Ca 28.06mg, Fe 2.56mg, cholesterol 68mg, and taurin 51mg. Fatty acid consists of various unsaturated fatty acids such as linoleic acid(46.24%) and oleic acid(33.67%).

마찰교반 점용접한 A 5052 알루미늄 합금판재의 접합부 특성 (Joint Characteristics of Spot Friction Stir Welded A 5052 Alloy Sheet)

  • 연윤모;이원배;이창용;정승부;송건
    • Journal of Welding and Joining
    • /
    • 제24권1호
    • /
    • pp.71-76
    • /
    • 2006
  • In this study, the microstructure and mechanical properties of spot friction stir welded A 5052 alloy were investigated. Especially, the effect of insertion depth of welding tool on microstructural changes and mechanical properties was investigated in order to obtain the optimum spot friction stir welding condition. The lap shear load of spot friction stir welded A 5052 alloy plates showed lower value at the shallowest insertion depth and increased with tool insertion depth. At 1.6mm, the maximum value of 3.35 kN was obtained, and then dropped to lower load when the insertion depth was deeper. Spot friction stir welded joints showed shear fracture mode at shallower insertion depths and fracture mode changed to plug fracture mode as the insertion depth was deeper.

숄더 지름과 회전 속도에 따른 AZ31 마그네슘합금의 마찰교반접합 특성 (Characteristics of Friction Stir Welded AZ31 Mg Alloys with Shoulder Diameter and Rotating Speed)

  • 전상혁;고영봉;박경채
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.36-41
    • /
    • 2013
  • Friction stir welding (FSW) is a relatively new joining technique particularly for magnesium and aluminum alloys that are difficult to fusion weld. In this study, AZ31 Mg alloys were joined by FSW with shoulder diameter 11, 19 mm and rotating speed 900, 1200, 1500, 1800 rpm. The shoulder diameter and welding speed depended on the heat input during FSW process. As a result, the microstructures of stir zone were a fine grain by dynamic recrystallization. According to the larger shoulder diameter and the higher rotating speed, refined grain sizes of stir zone were grown by higher heat input, and the microhardness of stir zone was lower. The tensile strength at the shoulder diameter 19 mm, rotating speed 900 rpm was obtained maximum value. This value compared with the base metal was over 93%.

A16061-T6 마찰교반용접시 핀 형상과 이송속도가 기계적 강도에 미치는 영향에 관한 연구 (A Study on the Effect that Pin Shape and Welding Speed have an Influence on Mechanical Strength in Friction Stir Welding A16061-T6)

  • 박희상;이영호;최원두;고준빈
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.22-28
    • /
    • 2008
  • Friction stir welding(FSW) is an relatively new solid state joining process. A1606l-T6 aluminium alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength to weight ratio and good corrosion resistance. This friction stir process(FSP) uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, etc., and tool pin profile playa major role in deciding FSP zone formation in A16061-T6 aluminium alloy. Tow different tool pin profiles have been used to fabricate the joints. The formation of friction stir processed zone has been analysed macroscopically. Tensile properties of the joints have been evaluated and correlated with the friction stir processed zone formation.

5052 알루미늄 합금 마찰교반접합부 특성에 미치는 접합인자의 영향 (Effect of Welding Parameters on the Friction Stir Weldability of 5052 Al alloy)

  • 이원배;김상원;이창용;연윤모;장웅성;서창제;정승부
    • Journal of Welding and Joining
    • /
    • 제22권3호
    • /
    • pp.69-76
    • /
    • 2004
  • Effects of friction stir welding parameters such as tool rotation speed and welding speed on the joints properties of 5052 Al alloys were studied in this study. A wide range of friction stir welding conditions could be applied to join 5052 AA alloy without defects in the weld zone except for certain welding conditions with a lower heat input. Microstructures near the weld zone showed general weld structures such as stir zone (SZ), thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Each zone showed the dynamically recrystallized grain, transient grain and structure similar to base metal's, respectively. Hardness distribution near the weld zone represented a similar value of the base metal under wide welding conditions. However, in case of 800 rpm of tool rotation speed, hardness of the stir zone had a higher value due to the fine grain with lots of dislocation tangle, a higher angle grain boundary and some of Al3Fe particles. Except joints with weld defects, tensile strength and elongation of the joints had values similar to the base metal values and fracture always occurred in the regions approximately 5mm away from the weld center.

Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

  • Paik, Jeom-Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권1호
    • /
    • pp.39-49
    • /
    • 2009
  • The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW), laser welding and friction stir welding (FSW), FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base) alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009), jointly funded by its member agencies.

육성용접된 Inconel 718 합금의 마찰교반을 이용한 개질처리 효과 (Effect of Surface Modification by Friction Stir Process on Overlap Welded Inconel 718 Alloy)

  • 송국현;홍도형;양병모
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.501-509
    • /
    • 2013
  • To evaluate the development of the microstructure and mechanical properties on surface modified and post-heattreated Inconel 718 alloy, this study was carried out. A friction stir process as a surface modification method was employed, and overlap welded Inconel 718 alloy as an experimental material was selected. The friction stir process was carried out at a tool rotation speed of 200 rpm and tool down force of 19.6-39.2 kN; post-heat-treatment with two steps was carried out at $720^{\circ}C$ for 8 h and $620^{\circ}C$ for 6 h in vacuum. To prevent the surface oxidation of the specimen, the method of using argon gas as shielding was utilized during the friction stir process. As a result, applying the friction stir process was effective to develop the grain refinement accompanied by dynamic recrystallization, which resulted in enhanced mechanical properties as compared to the overlap welded material. Furthermore, the post-heat-treatment after the friction stir process accelerated the formation of precipitates, such as gamma prime (${\gamma}^{\prime}$) and MC carbides, which led to the significant improvement of mechanical properties. Consequently, the microhardness, yield, and tensile strengths of the post-heat-treated material were increased more than 110%, 124% and 85 %, respectively, relative to the overlap welded material. This study systematically examined the relationship between precipitates and mechanical properties.

FSW된 이종알루미늄합금의 접합 특성 및 미세 조직 (Mechanical Properties and Microstructure on Dissimilar Friction-Stir-Weld of Aluminium Alloys)

  • 한민수;장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권1호
    • /
    • pp.75-81
    • /
    • 2011
  • 이종합금인 알루미늄 합금 6061-T6와 알루미늄 합금 5083-O의 용접을 위해 마찰교반 용접기술을 사용하였다. 마찰교반 용접된 이종 접합부에 대하여 기계적 특성, 경도 및 조직변화를 관찰하였다. 용접재의 기계적특성은 후진 측에 위치한 알루미늄 합금의 교반영역에 형성되는 미세조직이 주요한 변수로 작용하였다. 이종 알루미늄 합금이 교차한 양파 모양 형상의 얇은 층을 이루었다. 미세조직관찰에서 공구회전방향과 무관하게 이종합금 접합부에 기공이 관찰되지 않았으나 6061-T6 쪽 열영향부 영역에서 결정립 조대화기 뚜렷하였다. 본 논문의 연구결과, 결함이 없는 최상의 용접조건은 Al 6061-T6를 공구 진행방향에 전진 측에, Al 5083-O를 후진 측에 위치하고, 이송속도 124 mm/min, 1250 rpm의 공구의 회전수, 5 mm의 프루브 직경, 4.5 mm의 프루브 길이, 20 mm의 공구어깨, $2^{\circ}$의 공구 경사각 이다. 이때 용접재의 최대인장강도는 231 MPa이였고, 항복강도는 121 MPa을 나타내었다.