• Title/Summary/Keyword: STGAN

Search Result 2, Processing Time 0.018 seconds

Improved STGAN for Facial Attribute Editing by Utilizing Mask Information

  • Yang, Hyeon Seok;Han, Jeong Hoon;Moon, Young Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.1-9
    • /
    • 2020
  • In this paper, we propose a model that performs more natural facial attribute editing by utilizing mask information in the hair and hat region. STGAN, one of state-of-the-art research of facial attribute editing, has shown results of naturally editing multiple facial attributes. However, editing hair-related attributes can produce unnatural results. The key idea of the proposed method is to additionally utilize information on the face regions that was lacking in the existing model. To do this, we apply three ideas. First, hair information is supplemented by adding hair ratio attributes through masks. Second, unnecessary changes in the image are suppressed by adding cycle consistency loss. Third, a hat segmentation network is added to prevent hat region distortion. Through qualitative evaluation, the effectiveness of the proposed method is evaluated and analyzed. The method proposed in the experimental results generated hair and face regions more naturally and successfully prevented the distortion of the hat region.

Semi-Supervised Spatial Attention Method for Facial Attribute Editing

  • Yang, Hyeon Seok;Han, Jeong Hoon;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3685-3707
    • /
    • 2021
  • In recent years, facial attribute editing has been successfully used to effectively change face images of various attributes based on generative adversarial networks and encoder-decoder models. However, existing models have a limitation in that they may change an unintended part in the process of changing an attribute or may generate an unnatural result. In this paper, we propose a model that improves the learning of the attention mask by adding a spatial attention mechanism based on the unified selective transfer network (referred to as STGAN) using semi-supervised learning. The proposed model can edit multiple attributes while preserving details independent of the attributes being edited. This study makes two main contributions to the literature. First, we propose an encoder-decoder model structure that learns and edits multiple facial attributes and suppresses distortion using an attention mask. Second, we define guide masks and propose a method and an objective function that use the guide masks for multiple facial attribute editing through semi-supervised learning. Through qualitative and quantitative evaluations of the experimental results, the proposed method was proven to yield improved results that preserve the image details by suppressing unintended changes than existing methods.