• Title/Summary/Keyword: STAT3

Search Result 389, Processing Time 0.024 seconds

The Inhibitory Effect of Premature Citrus unshiu Extract on Atopic Dermatitis In Vitro and In Vivo

  • Kang, Gyeoung-Jin;Han, Sang-Chul;Yi, Eun-Jou;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.173-180
    • /
    • 2011
  • Atopic dermatitis (AD) is a chronic, recurrent inflammatory skin disease that is associated with Th2 cell-mediated allergy. The process that leads to infiltration of inflammatory cells into an AD lesion is remarkably dependent on various chemokines, especially TARC (thymus and activation-regulated chemokine/CCL17) and MDC (macrophage-derived chemokine/CCL22). Serum levels of these chemokines are over-expressed in AD patients. Citrus unshiu, which is known as Satsuma mandarin, has anti-oxidative, anti-inflammation, and anti-microviral activity. Therefore, we investigated the effect of EtOH extract of premature C. unshiu on AD. We did this using a DNCB-induced AD mouse model. We also tried to confirm an inhibitory effect for premature C. unshiu on the expression of inflammatory chemokines in IFN-${\gamma}$ and TNF-${\alpha}$ stimulated HaCaT human keratinocytes. We found that extract of premature C. unshiu reduced DNCB-induced symptoms such as hyperkeratosis, increased skin thickness, and infiltrated mast cells, in our AD-like animal model. The extract decreased levels of IFN-${\gamma}$ and IL-4 in ConA-stimulated splenocytes isolated from DNCB-treated mice. Also, extract of premature C. unshiu inhibited mRNA expression and protein production of TARC and MDC through the inhibition of STAT1 phosphorylation. These results suggest that C. unshiu has anti-atopic activity by regulating inflammatory chemokines such as TARC and MDC.

Combined Treatment with Stattic and Docetaxel Alters the Bax/Bcl-2 Gene Expression Ratio in Human Prostate Cancer Cells

  • Mohammadian, Jamal;Sabzichi, Mehdi;Molavi, Ommoleila;Shanehbandi, Dariush;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.5031-5035
    • /
    • 2016
  • Docetaxel, recognized as a stabilizing microtubule agent, is frequently administrated as a first line treatment for prostate cancers. Due to high side effects of monotherapy, however, combinations with novel adjuvants have emerged as an alternative strategy in cancer therapy protocols. Here, we investigated the combined effects of stattic and docetaxel on the DU145 prostate cancer cell line. Cytotoxicity was evaluated by MTT assay. To understand molecular mechanisms of stattic action, apoptotic related genes including Bcl-2, Mcl-1, Survivin and Bax were evaluated by real-time RT-PCR. Alteration in the expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 genes and Bax/Bcl-2 ratio were investigated via the $2^{{\Delta}{\Delta}CT}$ method. The $IC_{50}$ values for docetaxel and stattic were $3.7{\pm}0.9nM$ and $4.6{\pm}0.8{\mu}M$, respectively. Evaluation of key gene expression levels revealed a noticeable decrease in antiapoptotic Bcl-2 and Mcl-1 along with an increase in pro-apoptotic Bax mRNA levels (p<0.05). Our results suggest that combination of a STAT3 inhibitor with doctaxel can be considered as a potent strategy for induction of apoptosis via increasing Bax mRNA expression.

Obesity and Obese-related Chronic Low-grade Inflammation in Promotion of Colorectal Cancer Development

  • Pietrzyk, Lukasz;Torres, Anna;Maciejewski, Ryszard;Torres, Kamil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4161-4168
    • /
    • 2015
  • Colorectal cancer (CRC) is a worldwide health problem, being the third most commonly detected cancer in males and the second in females. Rising CRC incidence trends are mainly regarded as a part of the rapid 'Westernization' of life-style and are associated with calorically excessive high-fat/low-fibre diet, consumption of refined products, lack of physical activity, and obesity. Most recent epidemiological and clinical investigations have consistently evidenced a significant relationship between obesity-driven inflammation in particular steps of colorectal cancer development, including initiation, promotion, progression, and metastasis. Inflammation in obesity occurs by several mechanisms. Roles of imbalanced metabolism (MetS), distinct immune cells, cytokines, and other immune mediators have been suggested in the inflammatory processes. Critical mechanisms are accounted to proinflammatory cytokines (e.g. IL-1, IL-6, IL-8) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$). These molecules are secreted by macrophages and are considered as major agents in the transition between acute and chronic inflammation and inflammation-related CRC. The second factor promoting the CRC development in obese individuals is altered adipokine concentrations (leptin and adiponectin). The role of leptin and adiponectin in cancer cell proliferation, invasion, and metastasis is attributable to the activation of several signal transduction pathways (JAK/STAT, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), mTOR, and 5'AMPK signaling pathways) and multiple dysregulation (COX-2 downregulation, mRNA expression).

Transcriptome Network Analysis Reveals Potential Candidate Genes for Esophageal Squamous Cell Carcinoma

  • Ma, Zheng;Guo, Wei;Niu, Hui-Jun;Yang, Fan;Wang, Ru-Wen;Jiang, Yao-Guang;Zhao, Yun-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.767-773
    • /
    • 2012
  • The esophageal squamous cell carcinoma (ESCC) is an aggressive tumor with a poor prognosis. Understanding molecular changes in ESCC should improve identification of risk factors with different molecular subtypes and provide potential targets for early detection and therapy. Our study aimed to obtain a molecular signature of ESCC through the regulation network based on differentially expressed genes (DEGs). We used the GSE23400 series to identify potential genes related to ESCC. Based on bioinformatics we constructed a regulation network. From the results, we could establish that many transcription factors and pathways closely related with ESCC were linked by our method. STAT1 also arose as a hub node in our transcriptome network, along with some transcription factors like CCNB1, TAP1, RARG and IFITM1 proven to be related with ESCC by previous studies. In conclusion, our regulation network provided information on important genes which might be useful in investigating the complex interacting mechanisms underlying the disease.

Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis - Black cumin and cancer -

  • Mollazadeh, Hamid;Afshari, Amir R.;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.158-172
    • /
    • 2017
  • Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and $PPAR-{\gamma}$, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.

Efficient Interleukin-21 Production by Optimization of Codon and Signal Peptide in Chinese Hamster Ovarian Cells

  • Cho, Hee Jun;Oh, Byung Moo;Kim, Jong-Tae;Lim, Jeewon;Park, Sang Yoon;Hwang, Yo Sep;Baek, Kyoung Eun;Kim, Bo-Yeon;Choi, Inpyo;Lee, Hee Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.304-310
    • /
    • 2019
  • Interleukin-21 is a common ${\gamma}$-chain cytokine that controls the immune responses of B cells, T cells, and natural killer cells. Targeting IL-21 to strengthen the immune system is promising for the development of vaccines as well as anti-infection and anti-tumor therapies. However, the practical application of IL-21 is limited by the high production cost. In this study, we improved IL-21 production by codon optimization and selection of appropriate signal peptide in CHO-K1 cells. Codon-optimized or non-optimized human IL-21 was stably transfected into CHO-K1 cells. IL-21 expression was 10-fold higher for codon-optimized than non-optimized IL-21. We fused five different signal peptides to codon-optimized mature IL-21 and evaluated their effect on IL-21 production. The best result (a 3-fold increase) was obtained using a signal peptide derived from human azurocidin. Furthermore, codon-optimized IL-21 containing the azurocidin signal peptide promoted $IFN-{\gamma}$ secretion and STAT3 phosphorylation in NK-92 cells similar to codon-optimized IL-21 containing original signal peptide. Collectively, these results indicate that codon optimization and azurocidin signal peptides provide an efficient approach for the high-level production of IL-21 as a biopharmaceutical.

The Slough of Cicadidae Periostracum Ameliorated Lichenification by Inhibiting Interleukin (IL)-22/Janus Kinase (JAK) 1/Signal Transducer and Activator of Transcription (STAT) 3 Pathway in Atopic Dermatitis

  • Ganghye Park;Namgyu Kwon;Mi Hye Kim;Woong Mo Yang
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.859-876
    • /
    • 2023
  • It is known that animal-origin medicine could be one of effective treatment to remedy atopic dermatitis (AD) by controlling the cytokines. Cicadidae Periostracum (CP), the slough of Cryptotympana pustulata, has been frequently used for treating AD and skin affliction in traditional Korean Medicine. This study is aimed at investigating the ameliorating effects of CP on AD and its potential mechanism. The dinitrochlorobenzene sensitized mice were treated with CP for 2 weeks. The various biomarkers and the dermatitis scores presented that CP treatment can induce the visual and biological improvements of AD model. Pruritus, the most serious symptom of AD, which can cause repeated scratching behaviors and finally lead to lichenification, was reduced with CP treatment by regulating the inflammatory reactions. In addition, CP treatment diminished the number of mast cells that are known for causing inflammatory reactions. Moreover, it is proven that CP can decline secretion of interleukin-22, which means CP treatment has anti-inflammatory effects. CP treatment can correct the imbalance of helper T (Th)1 and Th2, downregulating thymic stromal lymphopoietin that leads to decrease of mRNA level of inflammatory cytokines. The crucial role of CP treatment is controlling of the Janus kinase 1/signal transducer and activator of transcription 3 pathway. In addition, CP treatment has the inhibitory effects on kallikrein related peptidase (KLK) 5 and KLK7. Taken together, CP treatment can ameliorate most symptoms and problems caused by AD disease, improving the AD patients' life quality.

COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19

  • Shama Mujawar;Gayatri Patil;Srushti Suthar;Tanuja Shendkar;Vaishnavi Gangadhar
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.16.1-16.14
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.

Effects of Soil Depth and Irrigation Period on Some of the Native Plants in and Artificial Substrate of Roof Garden (옥상녹화용 인공배합토에서 토심 및 관수주기에 따른 몇몇 자생식물의 생육특성)

  • Bang, Kwang-Ja;Ju, Jin-Hee;Kim, Sun-Hae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.75-83
    • /
    • 2004
  • Focusing on native plants that have high possibility of being introduced as rooftop material, this study was conducted to investigate extensive and easy-to-manage rooftop garden and to raise the utilization of native plants by verifying their growing response to artificial substrate soil depth and irrigation period. The study was conducted from March to September in 2002. Plants tested included Chrysanthemum zawadskii, Sedium middendorffianum, Thymus quinquecostatus, Allium senescens, and Dianthus superbus. Regarding soil depth, it was 5 cm and 10 cm. Irrigation period was non-irrigation, 1-week, 2-weeks, and 3- weeks, Its result is as follows; 1. In case of Sedum middendorffianum Maxim, mortality rate was 0% regardless of soil depth and irrigation period making it very suitable material for rooftop garden. 2. In case of Allium senescens L., mortality rate was 0% regardless of soil depth and irrigation period making it very suitable material for rooftop garden. Therefore, Provided that fertilizing is managed well, it is a plant that can be highly utilized.3. In case of Chrysanthemum zawadskii Herb. Subsp. (Nakai) Y. Lee Stat., the growth of top was lower in 10cm than in 5cm and it grew well in 10cm. When utilizing for rooftop garden, it would be desirable to keep minimum viable soil depth at over 10cm. If there is enough rainfall, soil and soil depth seem to have greater effect on growth than irrigation period does. 4. In case of Diauthus superbus L. var. longicalycinus (Maxim) Williams, rooting rate and growth were better in 10cm than in 5cm. Therefore, it is desirable to keep minimum soil depth at over 10cm. 5. In case of Thymus quinquecostatus Celak, the growth of top and flowering were better in 10cm than in 5cm. Therefore, it seems desirable to have minimum viable soil depth to be over 10cm. In conclusion, the most suitable species for rooftop garden are Sedium middendorffianum and Allium senescens in this experiment. However, Chrysanthemum zwadskii, Thymus quinquecostatus, and Dianthus chinensis also can be utilized greatly when irrigation is managed regularly in artificial mixed soil over 10cm.

Improving effect of psoriasis dermatitis by yakuchinone A in the TNF-α stimulated HaCaT cells (TNF-α 자극에 활성화된 HaCaT 세포주에서 Yakuchinone-A에 의한 건선 피부염 개선 효과)

  • Kim, Min Young;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.95-101
    • /
    • 2020
  • Psoriasis is an autoimmune skin disease that is accompanied by hyper proliferation of the epidermis, erythema of various sizes, and ulceration. However, the mechanism of the development of psoriasis dermatitis is unclear. Recently, it is known that the inflammatory cytokines and Th17 cells as well as chemokine (CC motif) ligand 20 (CCL20) are involved in the process of keratinocytes hyper-differentiation, which is common in psoriasis dermatitis. Therefore, we studied the effects of yakuchinone-A, an active ingredient of Alpinia oxyphylla Miquel known for its anti-inflammatory activity, to improve psoriasis dermatitis. First, cytotoxicity of yakuchinone-A was observed in cell counting kit-8 assay and not observed in 10 ㎍/mL concentration on the human keratinocyte HaCaT cells. Yakuchinone-A in the presence of tumor necrosis factor-alpha (TNF-α) on HaCaT cells inhibited mRNA expression of IL-6, IL-8, and TNF-α by up to 61.4±7.5, 23.6±1.5, 46.0±4.8%. CCL20, a chemokine that attracts immune cells such Th17 cells to the inflammation location, was also significantly suppressed by yakuchinone-A. In addition, IκB and STAT3 phosphorylation involved in the CCL20 expression was inhibited by yakuchinone-A in a concentration-dependent manner up to the level of 79.1±5.0, 80.8±2.3%. Furthermore, yakuchinone-A downregulated CCL20 mRNA expression level on IL-17A-activated HaCaT cells as a concentration-dependent manner. Based on these results, yakuchinone-A is expected to be developed as a new material for improving psoriasis dermatitis in the future.